

IL RISCHIO DI ESPLOSIONE

Analisi del rischio di esplosione; norme e modi di protezione; marcatura CE di prodotti ATEX

Ing. Giovanni TABASSO

Commissione Meccanica Industriale Ordine degli Ingegneri della Provincia di Roma

SOMMARIO

- 1- Atmosfere esplosive ed esplosivi
- 2- Diagrammi ternari
- 3- Riduzione del rischio di esplosione
- 4- Marcatura di prodotti ATEX
- 5- Modi di protezione dal rischio di esplosione
- 6- Apparato normativo

1- ATMOFERE ESPLOSIVE ED ESPLOSIVI

Atmosfera esplosiva = ATEX

Si applica:

direttiva 2014/34/UE (ATEX di prodotto) e norme armonizzate

Prodotto esplosivo

Si applica:

- R.D. 18/6/1931 n. 773 e s.m.i. = TULPS
- R.D. 6/5/1940 n. 635 e s.m.i. = regolamento per l'esecuzione del TULPS
 - Allegato A Elenco dei prodotti esplodenti e classificazione
- Norma CEI 64-2 per impianti di produzione e impianti di terra

1- ATMOFERE ESPLOSIVE ED ESPLOSIVI

Esplosivi e loro classificazione

- I. Polveri o esplosivi deflagranti: v_{espl}=(100÷1000) m/s
 - polvere nera, cartucce per fucili ecc.
- II. Dinamiti o esplosivi detonanti secondari: v_{espl} supersonica
 - dinamiti, tritolo ecc.
 - micce detonanti con meno di 15 g/m di esplosivo
- III. Detonanti o esplosivi detonanti primari o da innesco
 - detonatori
 - micce detonanti con più di 15 g/m di esplosivo
- IV. Artifici: fuochi artificiali, razzi di segnalazione
- V. Munizioni di sicurezza e giocattoli pirici
 - micce a lenta combustione, air-bag, pretensionatori per cinture di sicurezza ecc.

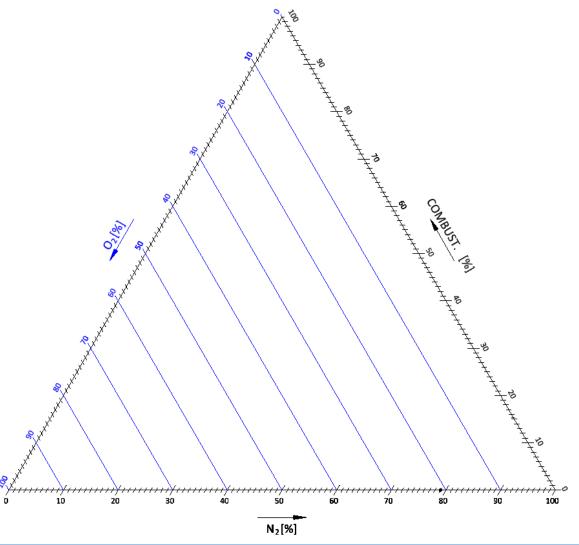
1- ATMOFERE ESPLOSIVE ED ESPLOSIVI

Atmosfera esplosiva = ATEX

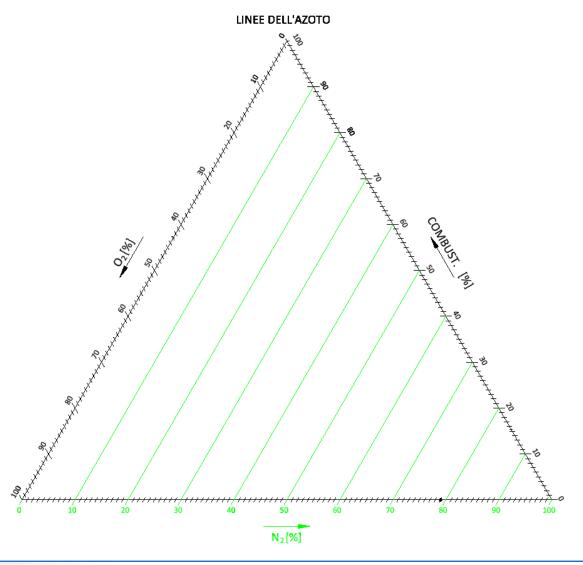
Una miscela contenente aria a condizioni atmosferiche, sostanze infiammabili allo stato di gas, vapori, nebbie o polveri nella quale, dopo l'innesco, la combustone si propaga all'intera miscela incombusta.

Atmosfera potenzialmente esplosiva

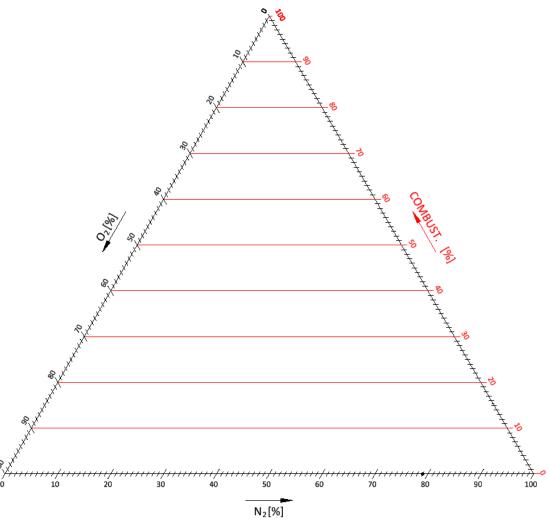
Un'atmosfera suscettibile di trasformarsi in un'atmosfera esplosiva a causa di condizioni locali e operative.

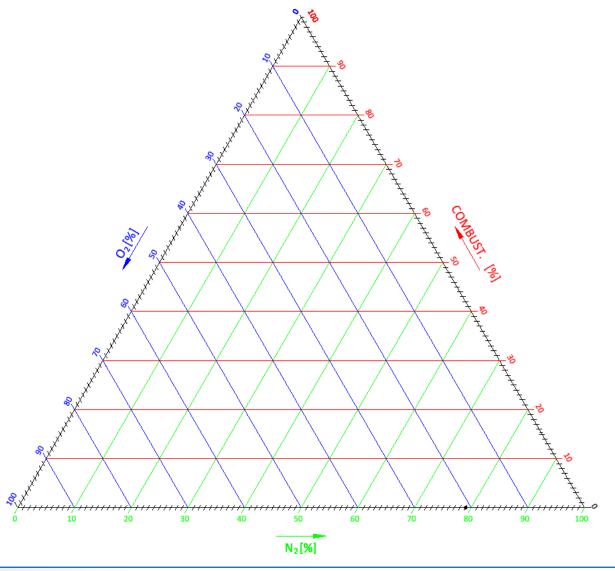

Condizioni locali e operative:

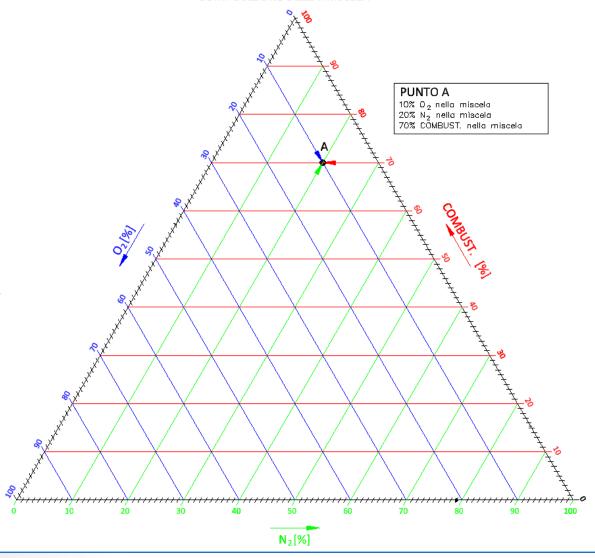
saranno oggetto di studio nella parte riservata ai diagrammi ternari.

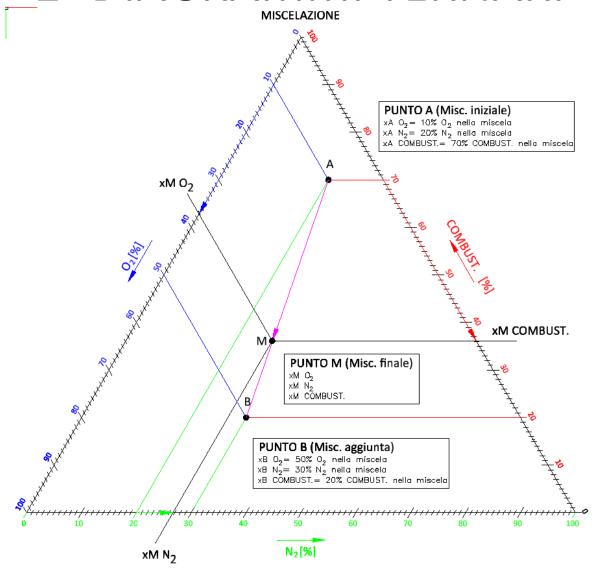


LINEE DELL'OSSIGENO

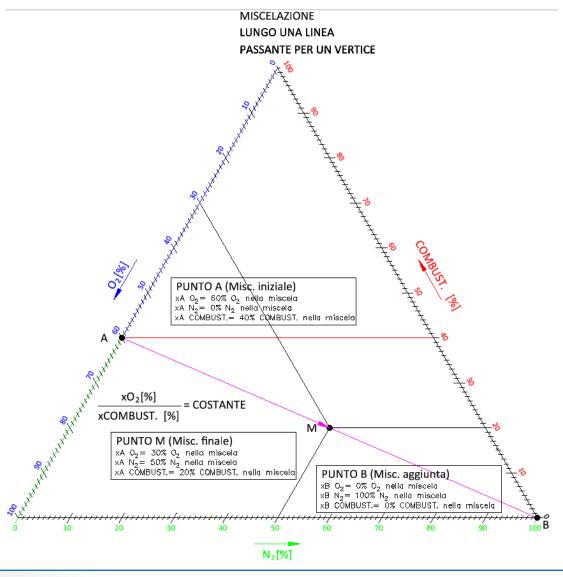


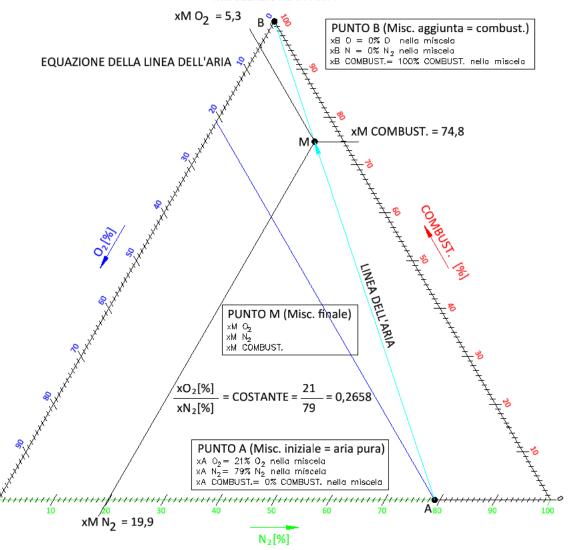


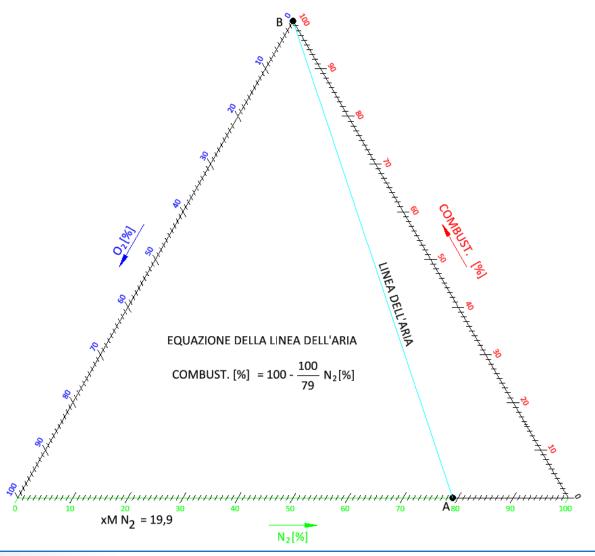


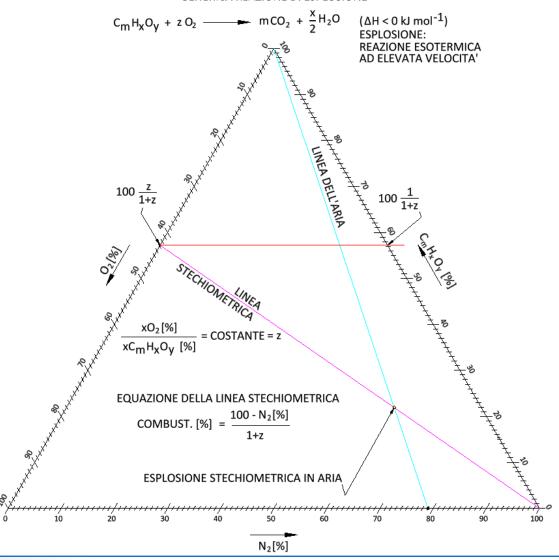


COMPOSIZIONE DELLA MISCELA






MISCELAZIONE IN ARIA


MISCELAZIONE IN ARIA

GENERICA REAZIONE DI ESPLOSIONE

1- Prevenzione della formazione di ATEX

Studio e riduzione della miscela ATEX con l'ausilio dei diagrammi ternari

Inertizzazione

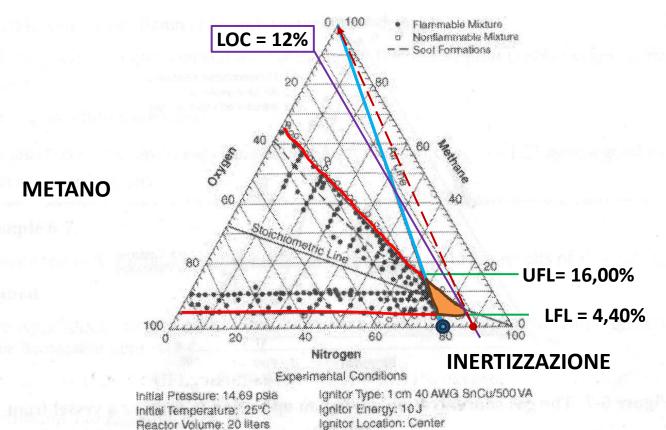
Ventilazione

Classificazione delle aree in zone pericolose e zone sicure

2- Prevenzione dell'innesco dell'esplosione

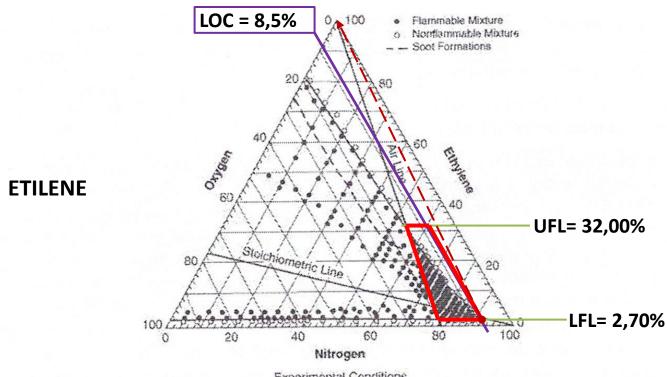
Riduzione dell'elettricità statica

Strumenti e attrezzature (prodotti) con modo di protezione idoneo per la zona


3- Minimizzazione del danno da esplosione

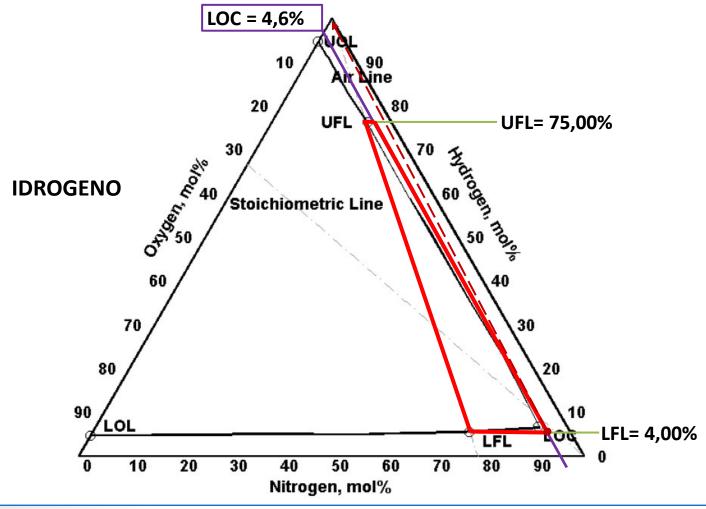
Strumenti di rilevazione dell'innesco

Impianti sprinkler a diluvio; pareti deboli per sfogo della sovrapressione



Experimental flammability diagram for methane. Source: C. V. Mashuga, Ph.D. dissertation, Michigan Technological University, 1999.

Experimental Conditions


Initial Pressure: 14:69 psia Initial Temperature: 25°C Reactor Volume: 20 liters

Ignitor Type: 1 cm 40 AWG SnCu/500 VA ignitor Energy: 10J Ignitor Location: Center

Experimental flammability diagram for ethylene. Source: C. V. Mashuga, Ph.D. dissertation, Michigan Technological University, 1999.

LFL: "Lower Flammability Limit" (o LEL: "Lower Explosion Limit")

$$LFL_{v}$$
 [%] = LFL [%mol] = LFL [m³/m³] · 100 espresso in volume

$$LFL_m = LFL [kg/kg] = \frac{LFL [\%mol]}{100} \cdot \rho_{gas}$$
 espresso in massa

Limite inferiore di infiammabilità o esplodibilità o esplosione

Concentrazione in aria di gas, vapore o nebbia infiammabile al di sotto della quale l'atmosfera non è esplosiva

LFL in miscele:

LFL_{misc} [%mol]=
$$\frac{1}{\sum_{i=1}^{n} \frac{Xi}{LELi [\%mol]}}$$

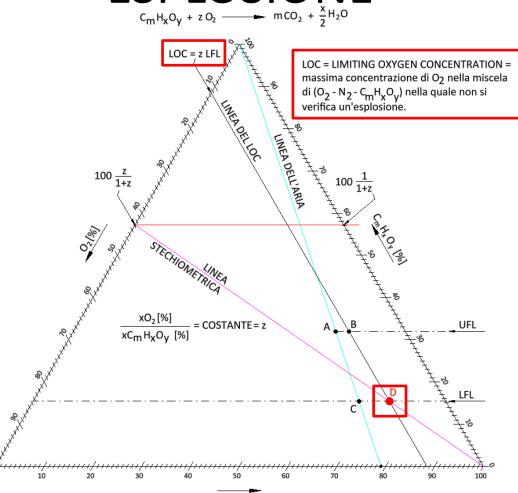
 \mathbb{F}

UFL: "Upper Flammability Limit" (o UEL: "Upper Explosion Limit")

$$UFL_{V}[\%] = UFL[\%mol] = UFL[m^3/m^3] \cdot 100$$
 espresso in volume

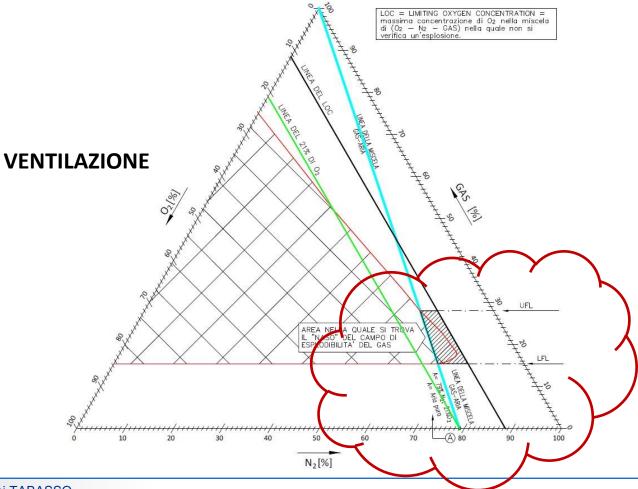
$$\mathsf{UFL_m} = \mathsf{UFL}\left[\mathsf{kg/kg}\right] = \frac{\mathsf{UFL}\left[\mathsf{\%mol}\right]}{\mathsf{100}} \cdot \rho_{gas}$$
 espresso in massa

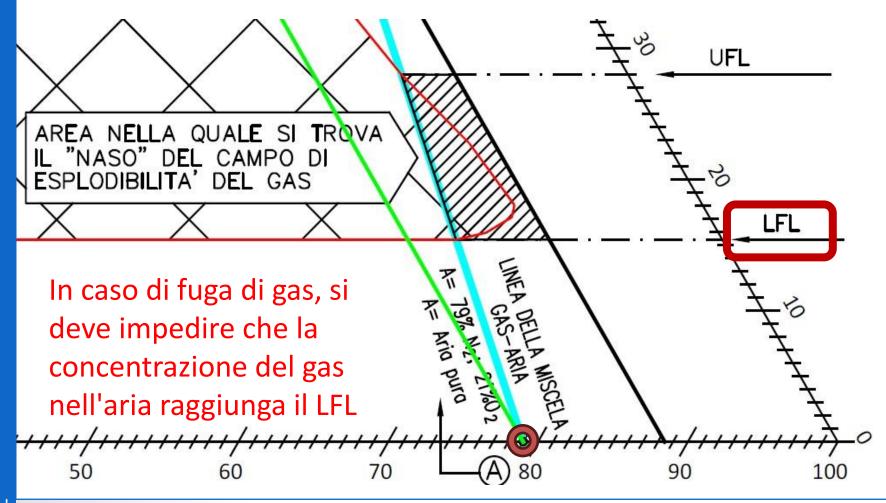
Limite superiore di infiammabilità o esplodibilità o esplosione

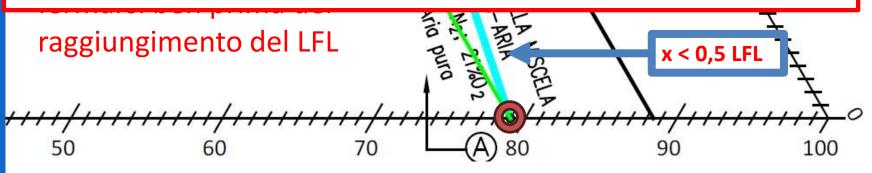

Concentrazione in aria di gas, vapore o nebbia infiammabile al di sopra della quale l'atmosfera non è esplosiva

UFL in miscele:

UFL_{misc} [%mol]=
$$\frac{1}{\sum_{i=1}^{n} \frac{Xi}{UELi [\%mol]}}$$

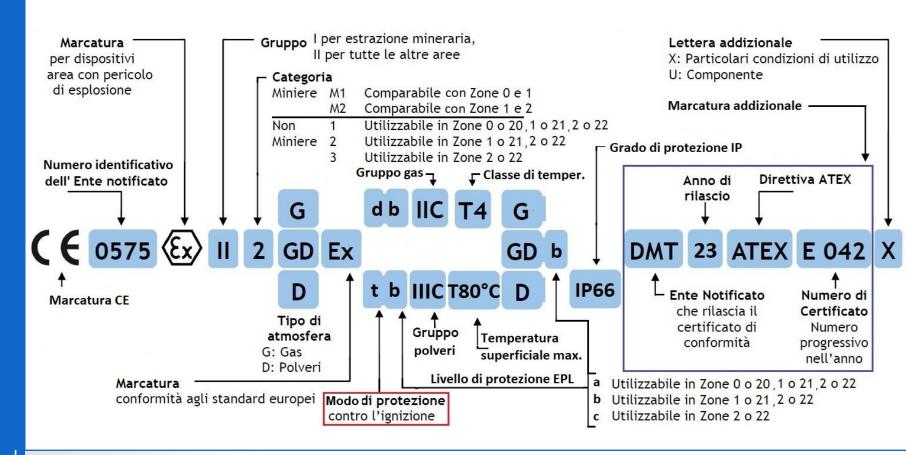

3- RIDUZIONE DEL RISCHIO DI ESPLOSIONE CmHxOy + z O2 - MCO2 + XH2O


 $N_{2}[\%]$


 \mathbb{F}

3- RIDUZIONE DEL RISCHIO DI

ECDIOCIONE


- Prevenzione della formazione di atmosfere esplosive:
 - a) studio e riduzione della miscela esplosiva con l'uso del diagramma ternario
 - b) inertizzazione
 - c) ventilazione, naturale o forzata
 - d) aspetti progettuali e costruttivi
- Prevenzione dell'innesco dell'esplosione, ad esempio:
 - a) riduzione dell'elettricità statica
 - b) strumenti e attrezzature a prova di esplosione
- Minimizzazione del danno da esplosione, ad esempio:
 - a) Strumenti di rilevazione dell'innesco all'interno della macchina
 - b) Impianto sprinkler a diluvio
 - c) Sfogo dell'onda di pressione attraverso aperture opportunamente progettate

Prodotti: apparecchi, sistemi di protezione, componenti e relative combinazioni

		Mezzi di protezione			Probabilità di	Durata		Grado di sicurezza
Gruppo	Categoria del prodotto	Qualità della protezione	EPL (Equipment Protection Level)	SIL (Safety Integrity Level)	presenza di ATEX [eventi/anno]	dell'ATEX [ore/anno]	Zona d'uso	equivalente (mezzi + zona)
II	1	Molto elevata	а	3	P > 10 ⁻¹	D > 1000	0 20	3
	2	Elevata	b	2	10 ⁻³ < P ≤ 10 ⁻¹	10 < D ≤ 1000	1 21	3
	3	Aumentata	С	1	10 ⁻⁵ < P ≤ 10 ⁻³	10 ⁻¹ < D ≤ 10	2 22	3

F

Gruppi e sottogruppi di GAS secondo CE	CENELEC
--	---------

Gruppo e sottogruppo	Esempi di gas appartenenti al gruppo			
IIA	Ammoniaca, metano, etano, propano, benzine, gasolio			
IIB	Etilene			
IIC	Idrogeno (anche "IIB+H2"), acetilene			

Gruppi e sottogruppi di POLVERI secondo CENELEC

Gruppo e sottogruppo	Polveri appartenenti al gruppo
IIIA	Fibre (cotone, lino)
IIIB	Non conduttrici (legno, farina, zucchero)
IIIC	Conduttrici (metalli, carbone)

Apparecchiature idonee per sottogruppo	possono essere usate con sostanze
А	appartenenti al sottogruppo A
В	appartenenti ai sottogruppi A, B
С	appartenenti ai sottogruppi A, B, C

Classi di temperatura massima ammissibile per la superficie degli equipaggiamenti destinati a zone con rischio di esplosione GAS secondo CENELEC

Classe di temperatura	Temperatura superficiale massima	Esempi di sostanze infiammabili e relative classi di temperatura		
T1	450 °C	Gas naturale, propano, idrogeno		
T2	300 °C	Acetilene, alcool etilico		
Т3	200 °C	Benzine e nafte leggere		
T4	135 °C	Dodecano, etere metiletilico		
T5	100 °C			
Т6	85 °C	Nitrato di etile		

La temperatura superficiale massima corrispondente alla classe di temperatura dichiarata dal fabbricante del prodotto deve essere sempre inferiore alla temperatura di auto-ignizione della sostanza infiammabile (gas, vapore, nebbia, miscela) che origina il rischio di esplosione. Per i prodotti per polveri, la temperatura superficiale massima è esplicitamente dichiarata nella marcatura.

5- MODI DI PROTEZIONE

Modo di protezione (app. elettriche)	Marcatura	Principio di protezione	Zona di impiego	Norma CENELEC	Esempi di applicazioni
Sicurezza Aumentata	Ex eb Ex ec	Prevenzione	1 2	EN 60079-7	Centraline di derivazione e collegamento, custodie, motori, lampade, morsetti
A prova di esplosione	Ex da Ex db Ex dc	Contenimento	0 1 2	EN 60079-1	Custodie, interruttori, disp. di comando e segnalazione, motori, custodie elettriche
A tenuta di polvere	Ex ta Ex tb Ex tc	Segregazione	20 21 22	EN IEC 60079-31	Interruttori, dispositivi di comando e segnalazione, lampade, centraline di deviazione e collegamento, motori, custodie elettriche
Sicurezza intrinseca	Ex ia Ex ib Ex ic	Prevenzione	0, 20 1, 21 2, 22	EN IEC 60079-11	Sensori, azionatori, strumentazione
Pressurizzazione	Ex px Ex py Ex pz	Segregazione	1, 21 2, 22	EN 60079-2	Quadri di commutazione e di comando, motori, dispositivi di misurazione e analisi, calcolatori

5- MODI DI PROTEZIONE

Modo di protezione (app. elettriche)	Marcatura	Principio di protezione	Zona di impiego	Norma CENELEC	Esempi di applicazioni
Incapsulamento	Ex ma Ex mb Ex mc	Segregazione	0, 20 1, 21 2, 22	EN IEC 60079-18	Bobine di relè e di motori, Elettronica.
Immersione in olio	Ex ob Ex oc	Segregazione	1 2	EN 60079-6	Trasformatori, relè, unità di comando e avviamento condensatori, interruttori
Riempimento in sabbia	Ex q Ex qb	Segregazione	2	EN 60079-5	Trasformatori, relè, condensatori
Tipo di protezione "n"	Ex nA Ex nC Ex nR	Prevenzione Segregazione Contenimento	2	EN IEC 60079-15	Soltanto applicazioni per zona 2
Radiazione ottica	Ex op is Ex op pr Ex op sh	Prevenzione	0, 20 1, 21 2, 22	EN 60079-28	Apparecchi optoelettronici, per es. con fibra ottica

5- MODI DI PROTEZIONE

Modo di protezione (app. NON elettriche)	Marcatura	Principio di protezione	Zona di impiego	Norma CENELEC	Esempi di applicazioni
Sicurezza costruttiva	Exc	Prevenzione	0, 20 1, 21 2, 22	EN ISO 80079-37	Metodi ingegneristici per ridurre il rischio di esplosione
Controllo della sorgente di accensione	Ex b	Prevenzione	0, 20 1, 21 2, 22	EN ISO 80079-37	Strumenti di controllo per prevenire malfunzionamenti causa di innesco.
Immersione in liquido	Ex k	Segregazione	0, 20 1, 21 2, 22	EN ISO 80079-37	Immersione in liquido per prevenire fonti di innesco

6 – APPARATO NORMATIVO

Principali norme

Norma	Titolo
Norma	
EN 1127-1:2019	Atmosfere esplosive – Prevenzione dell'esplosione e protezione contro l'esplosione Parte 1: Concetti fondamentali e metodologia
EN IEC 60079-0:2018	Atmosfere esplosive Parte 0: Apparecchiature – Prescrizioni generali
EN IEC 60079-10-1:2021	Atmosfere esplosive Parte 10-1: Classificazione dei luoghi - Atmosfere esplosive per la presenza di gas
EN 60079-10-2:2015	Atmosfere esplosive Parte 10-2: Classificazione dei luoghi - Atmosfere esplosive per la presenza di polveri combustibili
CEI 64-2 IV edizione	Impianti elettrici nei luoghi con pericolo di esplosione Prescrizioni specifiche per la presenza di polveri infiammabili e sostanze esplosive

6- APPARATO NORMATIVO

Osservazioni sulla norma CEI 64-2

- La Norma CEI 64-2, quarta edizione, rimane in vigore esclusivamente per i luoghi con pericolo di esplosione per la presenza o sviluppo di sostanze esplosive (Luoghi di Classe 0).
- Allo stato attuale, invece, per gli impianti elettrici in atmosfere esplosive (ATEX), si applica le CEI EN 60079-14 e la sua guida CEI 31-108.

6- APPARATO NORMATIVO

- CEI 64-2: classificazione dei luoghi e dei relativi impianti elettrici pericolosi per la presenza di sostanze esplosive.
- Luoghi "C0": luoghi "di classe 0" con pericolo di esplosione per la presenza o sviluppo di sostanze esplosive.
- Zona "AD": spazio di estensione determinata, in un luogo pericoloso, entro il quale gli impianti elettrici devono essere eseguiti a sicurezza secondo le prescrizioni della norma.
- Zona "Z1": zona AD con grado di sicurezza equivalente 1.
- Zona "Z2": zona AD con grado di sicurezza equivalente 2.

6- APPARATO NORMATIVO

Esempio: Zona "COZ2" ai sensi della norma CEI 64-2

- Zona "COZ2": zona nella quale si ha presenza di sostanze esplosive di cui solo eccezionalmente e per breve durata sono ragionevolmente prevedibili emissioni nell'atmosfera di polveri o vapori delle stesse in condizioni di funzionamento ordinario dell'impianto.
- Per essere classificata COZ2, le sostanze esplosive presenti nella zona devono essere in una delle seguenti condizioni:
 - contenute in involucri;
 - allo stato secco in forma di cariche compresse o ottenute per fusione o per trafilazione o con altro metodo adatto.

6 – APPARATO NORMATIVO

Impianti elettrici a sicurezza secondo norma CEI 64-2 Per zona COZ2 e a bordo macchina:

- Temperatura superficiale non superiore a 100 °C, superabile solo per breve tempo (intervento delle protezioni) nel componente sede del guasto;
- Non sono ammesse parti attive nude esterne alle costruzioni elettriche;
- Impianti a tenuta o "AD-T", con grado di protezione minimo IP44 per sostanze esplosive in polvere;
- Compartimentazione negli attraversamenti da zona pericolosa a zona sicura.

6 – APPARATO NORMATIVO

Impianti elettrici a sicurezza secondo norma CEI 64-2

Per zona COZ2 e a bordo macchina (segue):

- Giunzioni e derivazioni a tenuta almeno IP44;
- Posa dei cavi in tubi protettivi, canalette, cunicoli a tenuta;
- Apparecchi di illuminazione e apparecchi portatili: a tenuta e rispondenti alle prescrizioni della temperatura superficiale non superiore a 100 °C.

<u>IMPIANTI DI TERRA</u>

Prescrizioni in cap. XIV della CEI 64-2.

MATCH STANDARDS, PERFORM BETTER, STAY HUMAN

GRAZIE PER L'ATTENZIONE

Ing. Giovanni TABASSO

Studio di ingegneria

Progettazione e normativa di impianti industriali

mail@giovannitabasso.com

06 906 14 85

_

347 32 50 458

