

Commissione Ricostruzione Post Sisma e Riqualificazione del Sistema Edificio Impianto

Ing. Stefano Caroli - stcaroli@hotmail.com - 3929866236

CASO STUDIO – PALAZZETTO DELLO SPORT

OBIETTIVO DEL CORSO Progetto Impianto Aeraulico - Unità di Trattamento Aria

Il dimensionamento di un impianto a tutt'aria è un processo tecnico complesso che richiede una valutazione accurata di vari fattori per garantire un corretto bilanciamento tra il fabbisogno di ventilazione, il trattamento dell'aria (riscaldamento, raffreddamento, umidificazione e deumidificazione) e l'efficienza energetica. Esso comprende la progettazione di tutti i componenti principali dell'impianto: l'unità di trattamento dell'aria (UTA), la rete di distribuzione dell'aria, i ventilatori e i sistemi di estrazione, nonché la gestione dell'energia.

ASPETTO NORMATIVO

- 1. Conferenza permanente per i rapporti tra lo Stato e le Regioni e le Province di Trento e Bolzano: provvedimento 13 gennaio 2005: Linee *Guida sulla Legionellosi* per strutture turistico-recettive , aggiornanento 2015.
- 2. Norma UNI-16798: prestazione energetica degli edifici, <u>ventilazione</u> <u>degli edifici (portate di immissione aria primaria)</u>. Ha sostituito la vecchia UNI 10339.
- 3. Norma UNI 5104:1963- La Norma UNI 5104 non risulta essere stata sostituita direttamente, ma la normativa europea UNI EN 14825:2019, è diventato il riferimento principale per i metodi di prova e la valutazione delle prestazioni stagionali degli impianti.
- 4. UNI-EN 15780: pulizia e sanificazione dei canali e UTA.
- 5. UNI-EN 13053: requisiti e test per la classificazione delle UTA, componenti e sezioni

ASPETTO NORMATIVO

6-8-2022

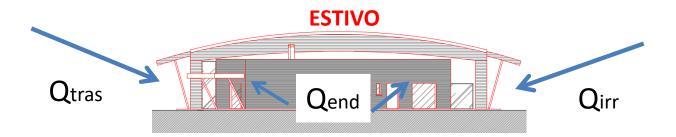
GAZZETTA UFFICIALE DELLA REPUBBLICA ITALIANA

Serie generale - n. 183

DECRETI, DELIBERE E ORDINANZE MINISTERIALI

MINISTERO DELLA TRANSIZIONE ECOLOGICA

DECRETO 23 giugno 2022.


Criteri ambientali minimi per l'affidamento del servizio di progettazione di interventi edilizi, per l'affidamento dei lavori per interventi edilizi e per l'affidamento congiunto di progettazione e lavori per interventi edilizi.

Punto 2.4.5 "Aerazione, ventilazione e qualità dell'aria" è indicato espressamente che è necessario garantire l'adeguata qualità dell'aria interna in tutti i locali abitabili tramite la realizzazione di impianti di ventilazione meccanica, facendo riferimento alle norme vigenti" (UNI 10339 e UNI EN 16798-1). L'obiettivo è quello di favorire il ricambio d'aria in luoghi pubblici ad alto rischio di contagio come Scuole, Biblioteche, Uffici pubblici, Università, Municipi, Tribunali, ecc.

Modello Termico

Da calcolare: ESTIVO → Carico Sensibile + Carico Latente

INVERNALE → Dispersioni termiche

INFILTRAZIONI → Carico Sensibile + Carico Latente

Parametri di Progetto

NOTI

- Temperatura esterna ESTIVA + UR%
- Temperatura esterna INVERNALE+UR%
- Temperatura ambiente ESTIVA+UR%
- Temperatura ambiente INVERNALE+UR%

DA ASSEGNARE

- Temperatura di immissione ambiente ESTIVA+UR%
- Temperatura di immissione ambiente INVERNALE+UR%

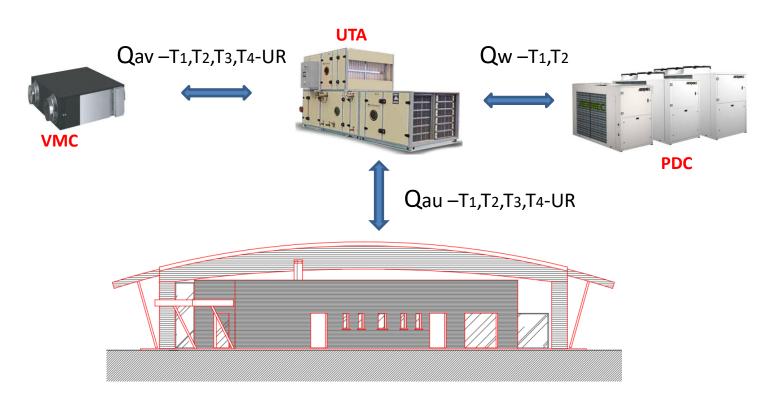
DA CALCOLARE

- Temperatura ingresso Batteria Estiva
- Temperatura ingresso Batteria Invernale
- Temperatura di ventilazione
- Portata di ricircolo
- Portata di ventilazione
- Portata di infiltrazioni
- Portata di vapore kg/h per umidificazione INVERNALE

Parametri di Progetto

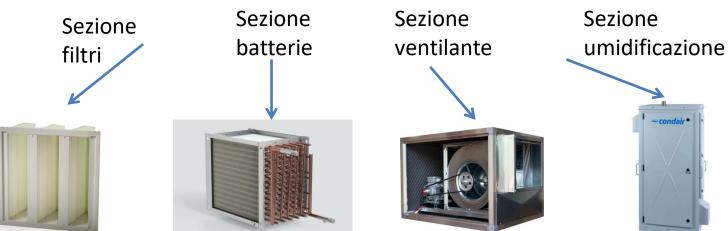
Aria Standard: → secca – 20°C UR 50%

Calore specifico dell'aria secca standard: cp = 0,24 kcal/kg°C

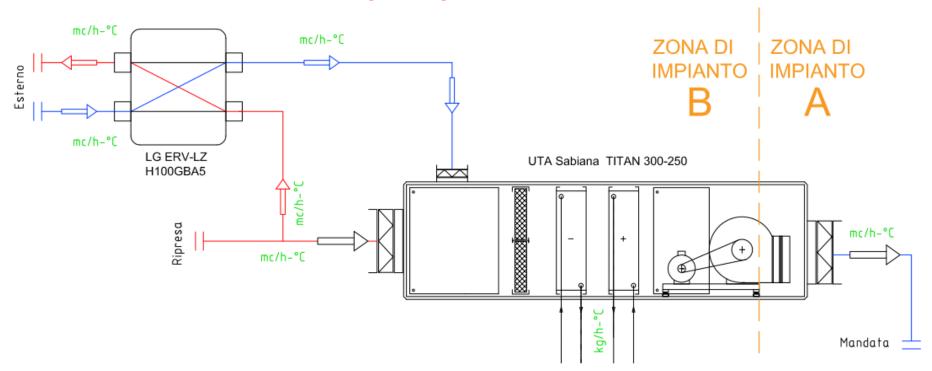

1 kg di aria secca occupa 0,833 mc → 1 mc pesa 1/0,833= 1,2 kg/mc

cp= 0,24*1,2 = 0,288 ~ 0,29 kcal/mc
Q = p*c*
$$\Delta$$
T = kcal/h
Scambio termico dell'aria
Q = 0,29 *p*(Tamb-Timm) \rightarrow Estivo
Q= 0,29*p*(Timm-Tamb) \rightarrow Invernale

Parametri di Calcolo

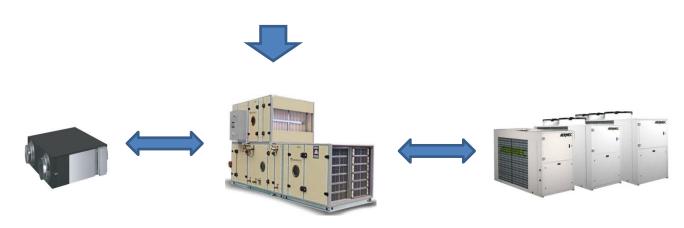

Condizioni interne: ESTATE →26°C BS 50%UR INVERNO → 20°C 50%UR

Elementi di Calcolo



Schema Funzionale

ARCHITETTURA DI RETE



Calcolo delle tre Portate: 1- Ricircolo 2- Ventilazione 3- Infiltrazione

- 1- Ricircolo pric = $Q_{s-amb}/[0,29*(T_{amb}-T_{imm})*(1-BF)]$
- 2 Ventilazione pvent → UNI 16798
- 3 Infiltrazione pinf → Codici di riferimento

ESTIVO

1- Ricircolo Bypass factor = 0,1

pric = 42102 / [1,16*0,29*(26-15)*(1-0,1)]0,29[Ta-(Timm+ Δ T')] = 0,29(Ta-Timm)(1-BF) Δ T' = 0,1(26-15) = 1,1 °C

pric = 42102 / [1,16*0,29*(26-16,1)]

CALCOLO DEL CARICO ESTIVO

CALCOLO DEL CARICO SU UNA SOLA ORA

Lug - 15.00 h 10/09/2025 16:19

Progetto: Palazzetto dello Sport

Locale: Spazio Atleti

Condizior	ni Climati	che dell	'Aria		Recupero da	a VMC	30,8	°C
Esterno				gr/kg aria 17 , 74			missione °C	
Interno	26	50,00	19,3	10,49	INVERNALE	34,5	°C	
******	*****	*****	*****	*****	*****	*****	*****	****
COMPONENTE	E DI CARIC	0		SENSIBILE	LATENTE			
RADIAZIONI	VETRO			7538 , 8				
TRASMISSIC	NE VETRO			2052,1				
TRASMISSIC	NE PARETI			3181,5				
TRASMISSIC	ONE TETTI			14929,2				
TRASMISSIC	ONE SPAZI	NON CDZ		0,0				
ILLUMINAZI	ONE			1197,1				
PERSONE n.	130			9100,0	5055,6			
CARICO INE	FILTRAZION	I mc/h	455	3523,7	4220,4			
ALTRI CARI	CHI SENSI	BILI		580,0				
ALTRI CARI	CHI LATEN	TI 			580,0			
SUB TOTALI	[42.102,4	9.856,0	WATT		
CARICO VEN	NTILAZIONE	mc/h	2.015	10.710	6.914			
CARICHI TO)TALI			52.812,4	16.770,3	WATT		
By-Pass Ba	atteria	0,1						
CARICO FRI	GORIFERO	TOTALE S	+L	69.582,6		WATT		
******	*****	*****	*****	*****	*****	*****	*****	***

Portata Aria Immissi	one	12.642	mc/h
Portata Aria Primaria		2.015	mc/h
Portata Aria Ricircol	.0	10.627	mc/h
Entalpia Hmix	57 , 25	kJ/kg	
Entalpia Himm.	40,73	kJ/kg	
Delta-H	16,52	kJ/kg	
Carico totale	250.676	kJ/h	

Carico Diagramma Carrier 69.466 Watt

2 – Ventilazione riferimento UNI 16798

		q_p	q_p	q _B	q	tot	qв	q	tot	qв	q	tot	
Type of building or space	gory	ntegory or area /person	minimum ventilation rate										
pe of buik space	Category	Floor m ² /pe	l/ (s m²)	l/s pers.	l/s, m²	1/s, m ²	l/s,pers	1/s, m ²	l/s, m ²	l/s,pers	1/s, m ²	1/s, m ²	l/s,pers
Ţ			for occ		for ve	for very low-pollu building		for low-polluted building		3440000C300C	for non-low-polluted building		
Auditorium	1	0,75	13,3	10	0,5	13,8	10	1	14,3	10,8	2	15,3	12
	II	0,75	9,3	7	0,35	9,7	7	0,7	10,0	7,5	1,4	10,7	8
	Ш	0,75	5,3	4	0,2	5,5	4	0,4	5,7	4,3	0,8	6,1	5
	IV	0,75	3,3	2,5	0,15	(3,5) 4.7	(3) 4	0,3	(3,6) 5,3	(2,7) 4	0,6	(3,9) 4,7	(3) 4

Cat III → Category of indoor environmental quality = moderate 130 persone → 130*4,3= 559 l/s= 559*3,6 ≈ 2015 mc/h

2 – Ventilazione riferimento Metodo/Norma pvent = 2015 mc/h

Estate \rightarrow Test = 38°C

→ <u>Trattamento VMC</u>

Inverno \rightarrow Test = 0°C

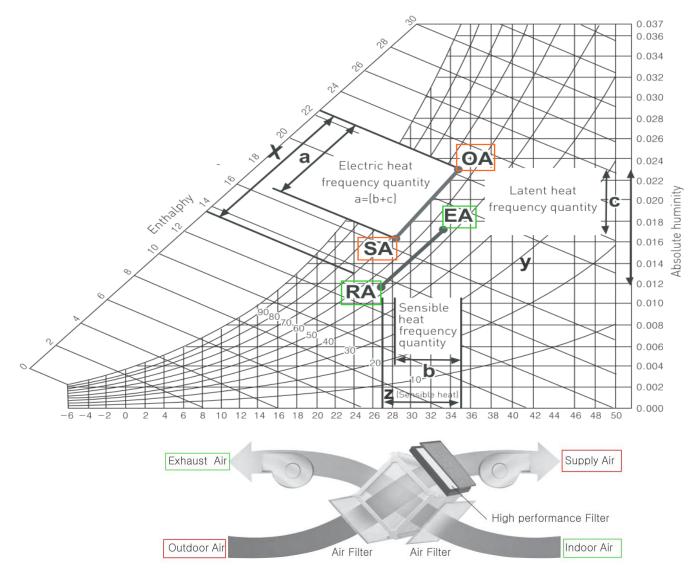
3 – Infiltrazioni: calcolate per mq di Sup. disperdente

Metodo / Norma	Range tipico (1/s ·m²)	Superficie disperdente (m²)	Infiltrazione minima (1/s)	Infiltrazione massima (1/s)
UNI EN ISO 9972 (n50=1,5-7)	0.2 - 0.7	1556	311,2	1089,2
UNI EN 12207 (serramenti)	0.8 - 14.0	86	68,8	1204
CasaClima Gold/A/B	0.08 - 0.2	1556	124,48	311,2
Passivhaus	0.08 - 0.08	1556	124,48	124,48
ASHRAE Fundamentals (α =2-10)	0.1 - 0.5	1556	155 , 6	778
Letteratura EU (nuovi-vecchi)	0.05 - 0.8	1556	77,8	1244,8

Valore adottato: → 0,08*1556 = 124,48 l/s ≈ 445 mc/h

2 – Infiltrazioni ferimento UNI 16798

pinf = 445 mc/h


Estate \rightarrow Test = 38°C

→ NESSUN Trattamento VMC

Inverno \rightarrow Test = 0°C

Parametri Prestazionali VMC



Parametri Prestazionali VMC

ERV mode

	Air Flow	SH/H/L	CMH (CFM)	1,500 / 1,500 / 1,200 (883 / 883 / 706)	2,000 / 2,000 / 1,600 (1,177 / 1,177 / 942)
	External Static Pressure	SH/H/L	Pa (inWTR)	160 / 100 / 50 (0.64 / 0.40 / 0.20)	160 / 100 / 50 (0.64 / 0.40 / 0.20)
le	Temperature Exchange Efficiency	SH/H/L	%	81.0 / 81.0 / 83.0	79.0 / 79.0 / 80.9
Eı	Enthalpy Exchange Efficiency	Heating (SH / H / L)	%	73 / 73 / 76	71 / 71/ 73
	Entriality Exchange Efficiency	Cooling (SH / H / L)	%	66 / 66 / 70	64 / 64 / 67

Calcolo delle Temperature del VMC

Rendimento VMC
$$\rightarrow \eta = (T_{imm}-T_{ext})/(T_{amb}-T_{ext})$$

 $\rightarrow \eta = (T_{amb}-T_{esp})/(T_{amb}-T_{ext})$
ESTIVO: $0,6 = (T_{imm}-38)/(26-38) \rightarrow T_{imm}=30,8^{\circ}C$
 $0,6 = (26-T_{esp})/(26-38) \rightarrow T_{esp}=33,2^{\circ}C$
INVERN: $0,7 = (T_{imm}-0)/(20-0) \rightarrow T_{imm}=14^{\circ}C$
 $0,7 = (20-T_{esp})/(20-0) \rightarrow T_{esp}=6^{\circ}C$

INVERNALE

1- Ricircolo Bypass factor NO → solo ESTIVO

pestiva \rightarrow (Timm-20)= 49357/[1,16*0,29*12642)]

Timm = 20+11,61 = 31,61°C

pric-est/inv = 12.642 mc/h

CALCOLO DEL CARICO INVERNALE – POTENZA BATTERIA CALDA

CALCOLO DISPERSIONI INVERNALI

Progetto: Palazzetto dello Sport

Locale: Spazio Atleti				
		Recupero da VMC	14 °C	
Temperatura Aria Esterna	0,0 °C	Immiss. Ambiente	31,61 °C	
Temperatura Interna Locale	20,0 °C			
TRASMITTANZE Muri	Tetti Vetro	Pavimento		
1,1	1 2,552	1 W/mq°K	Portata imm. Invernale	12.642 mc/h
Area Esp.	DT Coeff. Esp	. DISP.	Carico Aria Primaria	13.684 W
				63.041 W
Paretel 161,129 NW	20 1,05	3722 , 08		
Parete2 161,129 SE	20 1,1	3899,32	W Portata per riscaldamento	12.642 mc/h
parete3 31,4469 -	20 0	0,00	W Verifica portate : ESTIVA 12.	.642 mc/h
Parete4 159,38 NE	20 0	0,00	W	
Vetro1 43 NW	20 1,05	2304,46	W 12.642 > 12.642	VERIFICA POSITIVA
Vetro2 43 SE	20 1,1	2414,19	W	
Vetro3 0 -	20 0	0,00	W	
Vetro4 0 NE	20 0	0,00	W	
Pavimento 858 -	20 -	17160,00	W	
Solaio 858 -	20 –	17160,00	W	
Pareti verso locali non r	scaldati			
Infiltrazioni		2641,47	W	
Luce Par. 0 m	Dispersioni	0,00	W	
Altezza 6,13 m				
DT 0 °C				
Ponti Termici lineari	m K-lineare	W/mK 55,68	W	
	4 0,696			
	Dispersioni di Calco	olo 46.716	W	
	Locali confinanti		W	
	Infiltrazioni	2641,47	W	
	TOTALE DISPERSIONI	49.357		

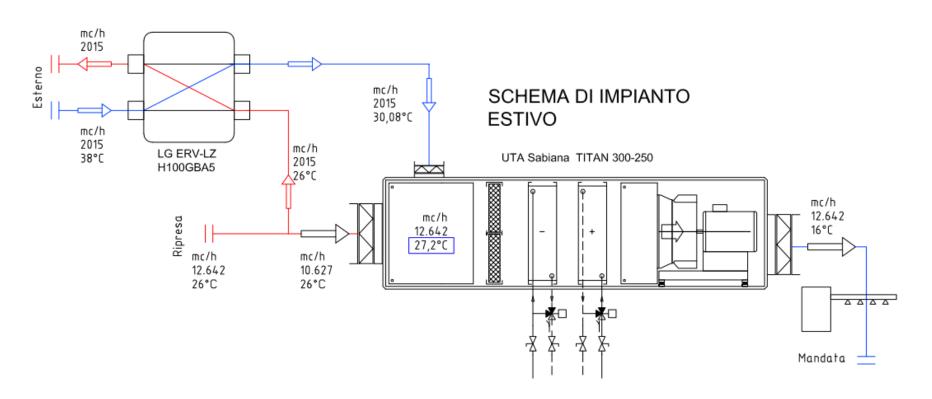
Definizione delle Portate Zone A-B

DEFINIZIONE DELLE PORTATE UTA

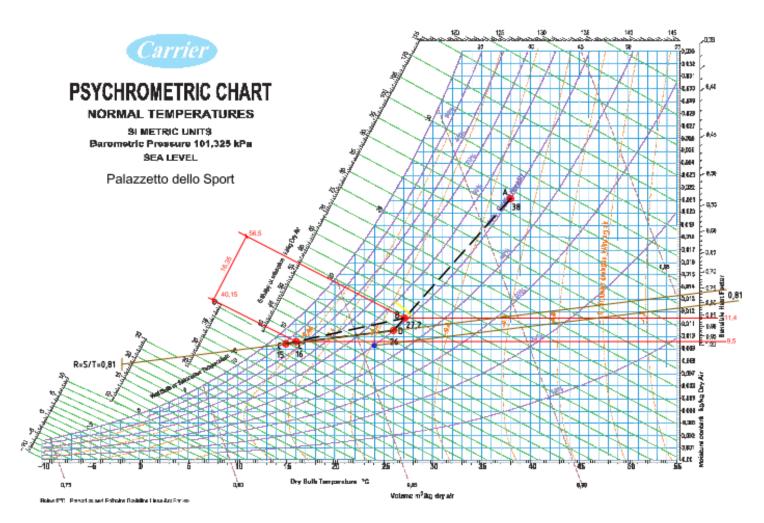
Qimm = 12.642 mc/h
Qvent = 2.015 mc/h
Qric = 10.627 mc/h

Temperature Trattar	mento UT	A	ESTIVO T°C	INVERN. T°C	
Aria Ventilazione	2.015	mc/h	30,8	14	Recupero
Infiltrazione	455	mc/h	38	0	Esterna
Ricircolo Amb.	10.627	mc/h	26,00	20,00	Ambiente
Immessa Amb.	12.642	mc/h	27 , 20	18,32	Imm.UTA

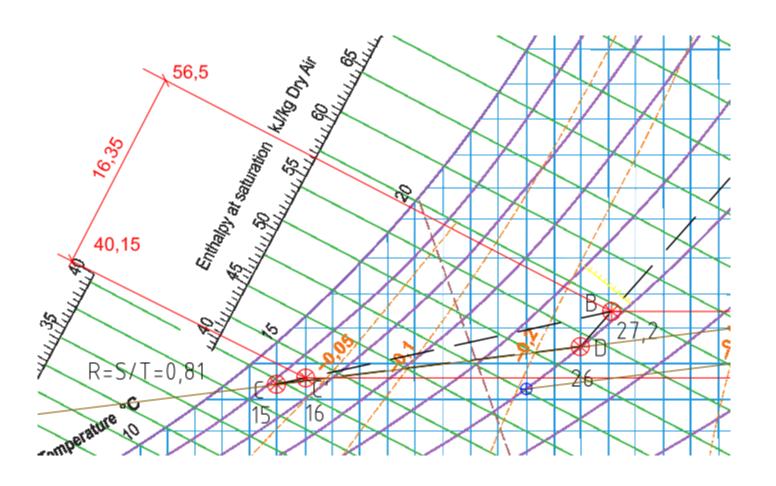
Parametri Prestazionali VMC – Zona B


VMC-LG-ERV LZ-H100GBA5

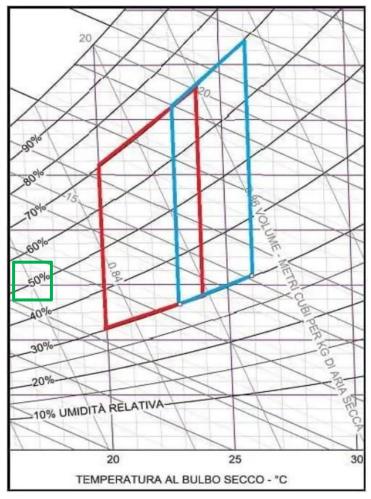
Parametri di Trasformazione	ESTIVO
Temperatura Esterna	38 °C
Temperatura Interna	26 °C
Rendimento Unità VMC	60%
UR% Esterno	50%
Rendimento η = (Timm-Text)/(Tir	nt-Text)
Timm = 15 °C> Ambien: Timm = 30,8 °C> UTA	
Parametri di Trasformazione	INVERNALE
Parametri di Trasformazione	INVERNALE
Parametri di Trasformazione Temperatura Esterna	INVERNALE
Parametri di Trasformazione Temperatura Esterna Temperatura Interna	INVERNALE 0 °C 20 °C
Parametri di Trasformazione Temperatura Esterna Temperatura Interna Rendimento Unità VMC	INVERNALE 0 °C 20 °C 70% 50%



ARCHITETTURA DI RETE

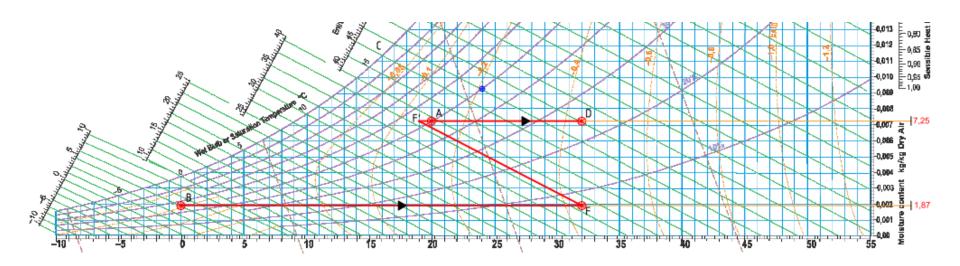


CACLOLO POTENZA BATTERIA FREDDA


SUB TOTALI		42.102,4	9.856,0	WATT	
CARICO VENTILAZIONE mc/h	2.015	10.710	6.914		
CARICHI TOTALI		52.812,4	16.770,3	WATT	
By-Pass Batteria 0,1		60 500 6			
CARICO FRIGORIFERO TOTALE	S+L	69.582,6		WATT	
*********	*****	*****	*****	*****	*****
Portata Aria Immissione	12.642	mc/h	Entalpia Hm	nix	56 , 6
Portata Aria Immissione Portata Aria Primaria	12.642 2.015	- ,	Entalpia Hm Entalpia Hi		-
Portata Aria Primaria		mc/h	-		56,67 40,15 16,52
	2.015	mc/h	Entalpia Hi	.mm .	40,15

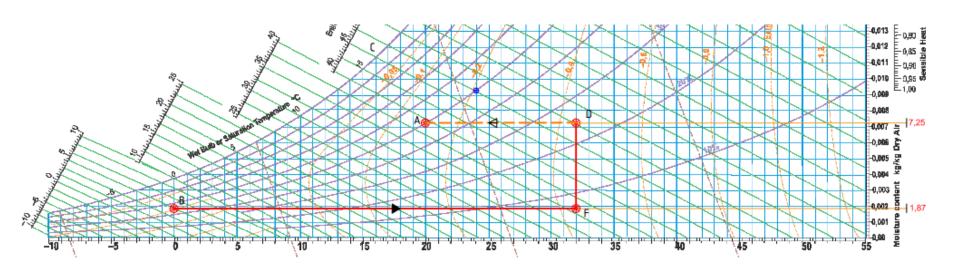
CALCOLO UMIDIFICAZIONE

Nel periodo INVERNALE La necessità di umidificazione dell'aria nasce dall'esigenza di garantire un valore dell'Umidità Relativa con un valore superiore ad almeno 30 UR%, come si ricava dal diagramma del benessere invernale [Rosso]. Nel periodo estivo [blu] nasce invece il problema opposto e si deve deumidificare. Appare evidente che l'area centrale del benessere climatico interno si attesta per entrambe le stagioni a 50 UR%



METODI DI UMIDIFICAZIONE

L'umidificazione ADIABATICA è il processo di aumento dell'umidità di un'aria senza apporto di energia esterna, ma tramite l'evaporazione diretta dell'acqua che viene immessa in micro particelle con grande superficie di scambio che permette l'evaporazione. Il calore di evaporazione viene fornito dall'aria circostante, che conseguentemente si raffredda.

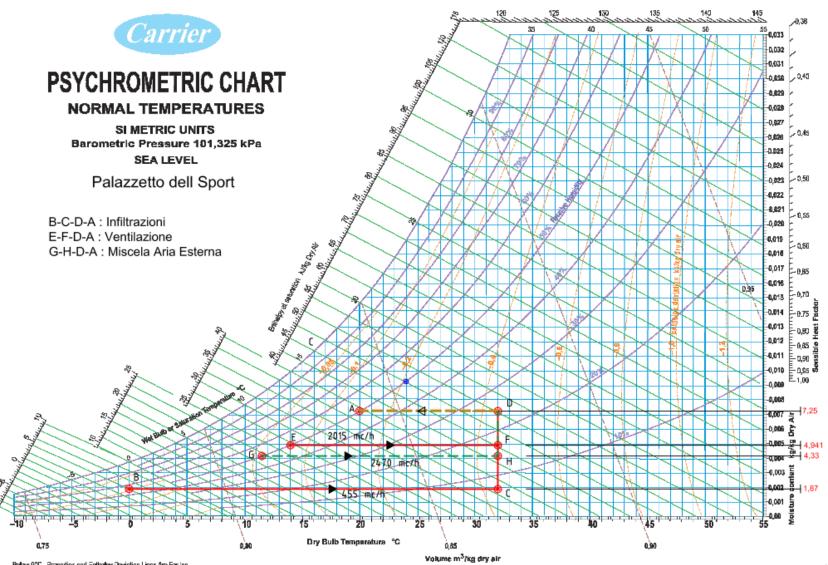


METODI DI UMIDIFICAZIONE

L'umidificazione ISOTERMA è il processo di aumento dell'umidità di un'aria tramite immissione diretta di vapore saturo prodotto da uno specifico dispositivo ed immesso direttamente nell'UTA o nella canalizzazione. La temperatura dell'aria si mantiene pressochè costante .

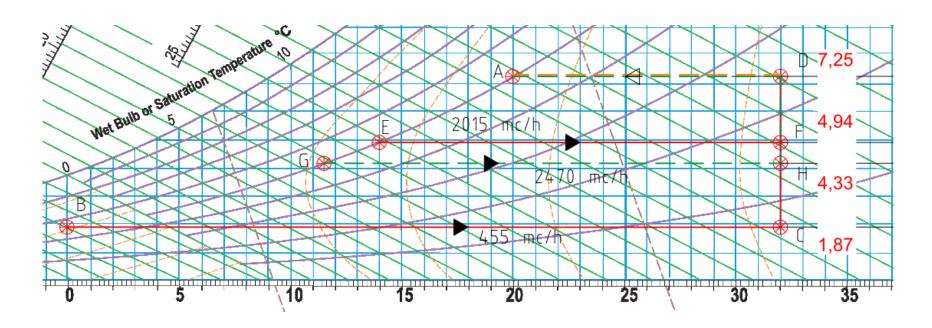
CALCOLO UMIDIFICAZIONE A VAPORE

Il calcolo va riferito alle sole portate di: ARIA ESTERNA e ARIA di INFILTRAZIONE

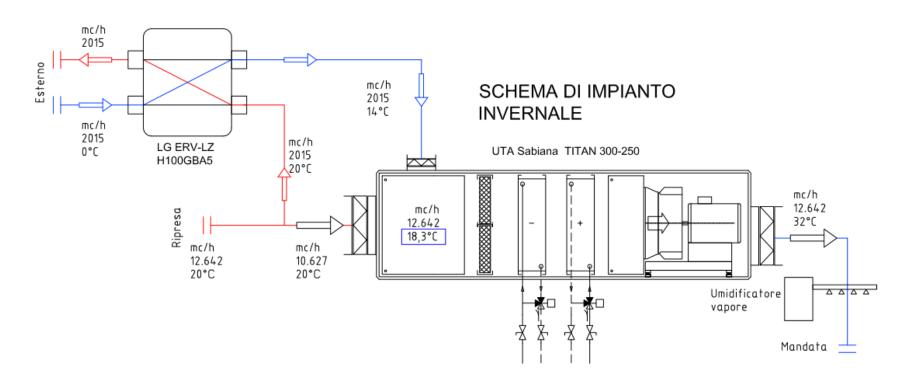

La quantità oraria in peso di acqua di evaporare in kg è data dalla relazione:

kg = [Qe+Qi]*1,2 *(x2-x1)/1000 con $Q=mc/h \rightarrow kg/h$ di vapore saturo a 110° da da produrre e quindi immettere in UTA o Canali

Kg = [We+Wi]*(x2-x1)/1000 con W= kg/h



Below 0°C, Properties end Enthalpy Devietion Lines Are For Ice.


DATI DI INPUT				
			UR∜	T1°C
Portata Aria infiltrazione	455	mc/h	50	0
Portata Aria Ricircolo	2015	mc/h	50	14

Ventilazione		Infiltrazione	
x1 da VMC Temperatura VMC Portata x2 Ambiente Dx	0,004941 kg/kg aria secca 14 °C 2.015 mc/h 0,007257 kg/kg aria secca 0,002317	<pre>x1 da Esterno Temperatura Ext. Portata x2 Ambiente Dx</pre>	0,001875 kg/kg aria secca 0 °C 455 mc/h 0,007257 kg/kg aria secca 0,005383
Produzione oraria	5,60 kg Vapore	Produzione oraria	2,94 kg Vapore
Parametri climatici PC	ST BATTERIA	Pressione Atmosferica	101325 Pa
Temperatura Aria	32 °C	Pressione di Vapore	304,35 Pa
Umidità Relativa UR	6,4 %	a UR% = 6,4	
Pressione di Vapore a UR% = 100	4755,40 Pa	X = kg di vapore per kg di aria secca	1,87 gr/kg as

ARCHITETTURA DI RETE

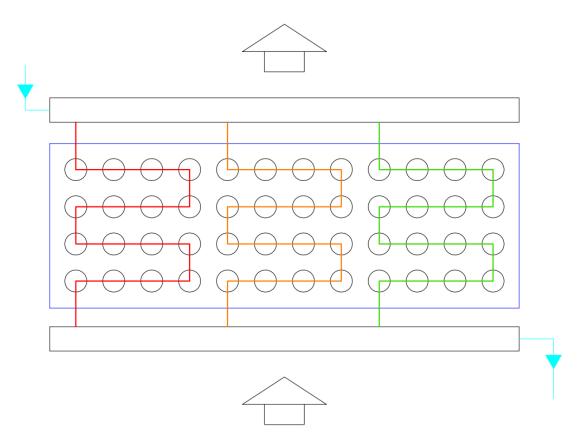
SEZIONE BATTERIE

PARAMETRI CARATTERISTICI

- a- Sezione Frontale AxB
- b- Numero dei Ranghi
- c- Numero dei Circuiti
- d- Numero dei Tubi
- e- Passo Alette
- f- Portata Aeraulica
- g- Portata Idronica

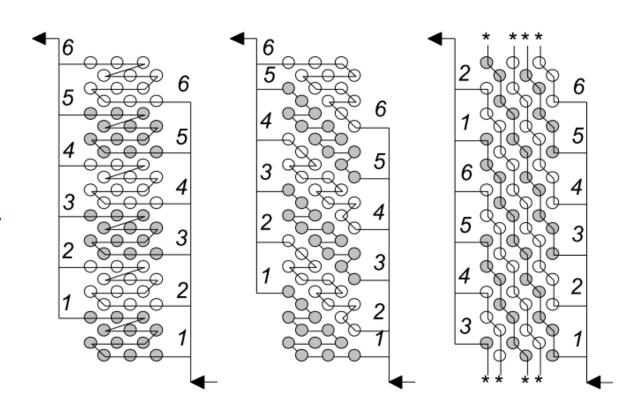
PARAMETRI FUNZIONALI

- h-Te UR% uscita aria e PdC
- i- Tin Tout acqua e PdC



SEZIONE BATTERIE

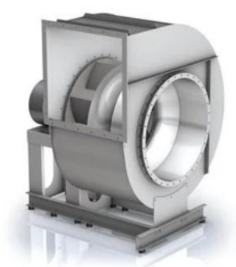
Numero dei Ranghi → 4 Numero dei Circuiti → 3 Numero dei Tubi → 12 Passo Alette → 2,5mm



SEZIONE BATTERIE

Numero dei Ranghi → 6 Numero dei Circuiti → 6 Numero dei Tubi → 24 Passo Alette → 2,5mm


SEZIONE VENTILANTE


PARAMETRI CARATTERISTICI

- a- Dimensioni girante
- b- Pale avanti o rovesce

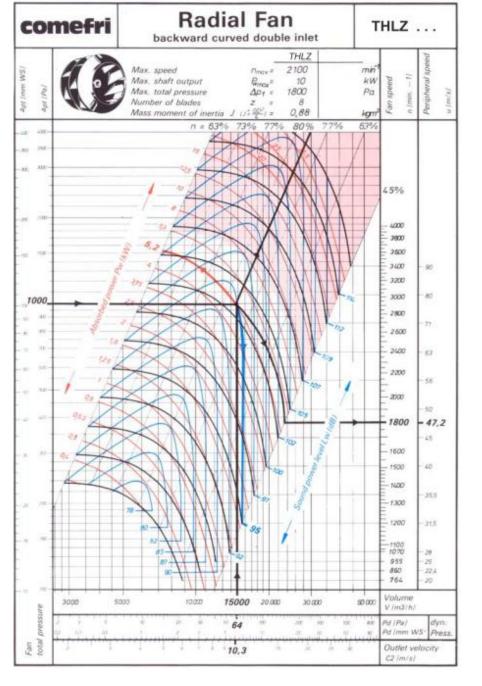
PARAMETRI FUNZIONALI

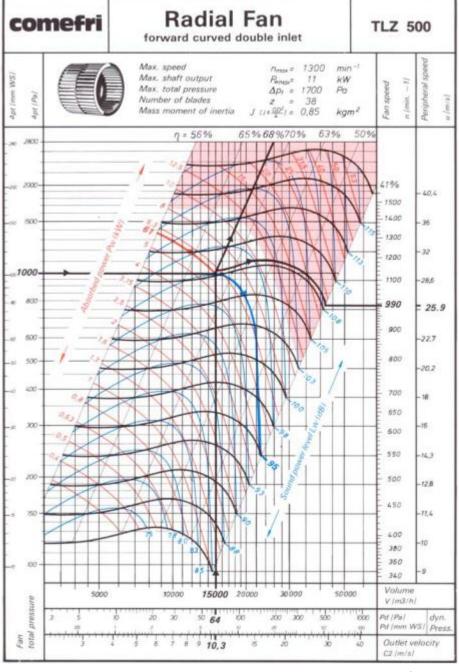
- c- Numero di Giri
- d- Portata
- e- Prevalenza
- f- Efficienza
- g- Portata assorbita
- h- pressione sonora dB(A)

SEZIONE VENTILANTE

Pale AVANTI

- Elevato numero di pale curve nel verso di rotazione
- Elevate portate, medio basse prevalenze, medio basso numero di giri
- Compattezza → permettono grande portata con diametri ridotti.
- Rumore contenuto alle basse velocità.
- Adatti a pressioni medio-basse (fino a 1000–1200 Pa).
- Costo più basso
- Rendimento inferiore (60–70 %) rispetto a quelli a pale rovesce.
- -Sensibili all'intasamento dei filtri: la curva portata-pressione non è stabile, quindi se i filtri si sporcano la portata può calare bruscamente.
- Maggior consumo energetico a parità di prestazioni.
- Molto difficile controllo con inverter, perché la curva è molto ripida.





SEZIONE VENTILANTE

Pale ROVESCE

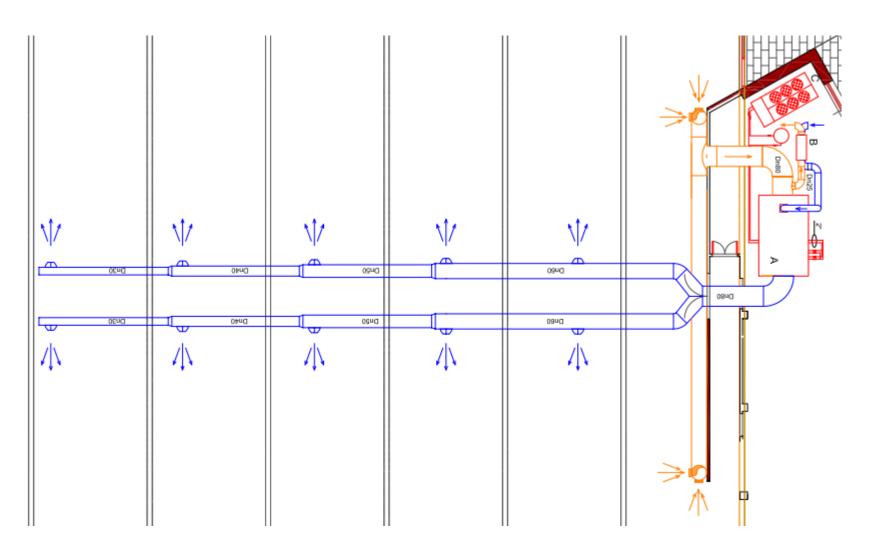
- Basso numero di pale curvate opposte al verso di rotazione
- Elevate portate, alte prevalenze, alto numero di giri
- Poco Compatti → non adatti a spazi compatti
- Rumore più alto alle basse velocità
- Adatti a pressioni alte (fino a 2500 Pa)
- Costo più elevato
- Rendimento elevato (80–85 %) rispetto a quelli a pale avanti
- Non sensibli all'intasamento dei filtri: la curva portata-pressione è stabile, se i filtri si sporcano la portata cala gradualmente senza stallo
- Ideali per regolazione con inverter : risposta lineare alla variazione di velocità
- Minor consumo energetico a parità di portata e pressione
- Più adatti a UTA medio-grandi e impianti a portata variabile (VAV)

comefri	efri Radial Fan				TLZ 500		
dpt (roon WS)	Max. speed Max. shaft output Max. total pressure Number of blades Mass moment of inertia	$n_{\text{max}} = 1300$ $P_{\text{wray}} = 11$ $\Delta p_1 = 1700$ $z = 38$ $J = 1/2 \frac{20}{3} = 0.85$	min-1 kW Pa kgm²	Fan speed n Imin. – 17	Peripheral speed u (mrs)		

CO	mefri	Radia			Т	HLZ	
	-			THLZ			po
t /mm WS/		Max. speed Max. shaft output Max. total pressure Number of blades	Omos = Proces Apt = Z =	2100 10 1800 8	min ¹ kW Pa	n speed min 1/.	ripheral spe
ď.		Mass moment of inertia J	(1:00) =	0,88	Agm ²	2 =	g.

Selected from the Curve:		
Radial Fan TLZ 500		
Fan speed	n	= 990 min ⁻¹
Circumferential speed	u	= 25.9 m/sec.
Dynamic pressure	p_{d}	= 64 Pa
Static pressure	p_{st}	= 936 Pa (Total – dynamic pressure)
Outlet velocity	c_2	= 10.3 m/sec.
Volume flow	V	= 15000 m ³ /h
Efficiency	η	= 0.68
Absorbed power	P_{W}	= 6.1 kW
Motor rating	P_{M}	= P _w + 20%
Suond power level	L_W	= 95 dB
Sound pressure level	L_PA	= 95 - 21 = 74 dB(A)

	Selected from the Curve:				
	Radial Fan THLZ				
	Fan speed	n	=	1800	min ⁻¹
	Circumferential speed	u	=	47.2	m/sec.
	Dynamic pressure	p_d	=	64	Pa
:)	Static pressure	p_{st}	=	936	Pa (Total – dynamic pressure)
	Outlet velocity	C_2	=	10.3	m/sec.
	Volume flow	V	=	15000	m ³ /h
	Efficiency	η	=	0.80	
	Absorbed power	P_{W}	=	5.2	kW
	Motor rating	P_{M}	=	P _w + 15%	
	Suond power level	L_W	=	95	dB
	Sound pressure level	L_{PA}	=	95 – 21 =	74 dB(A)

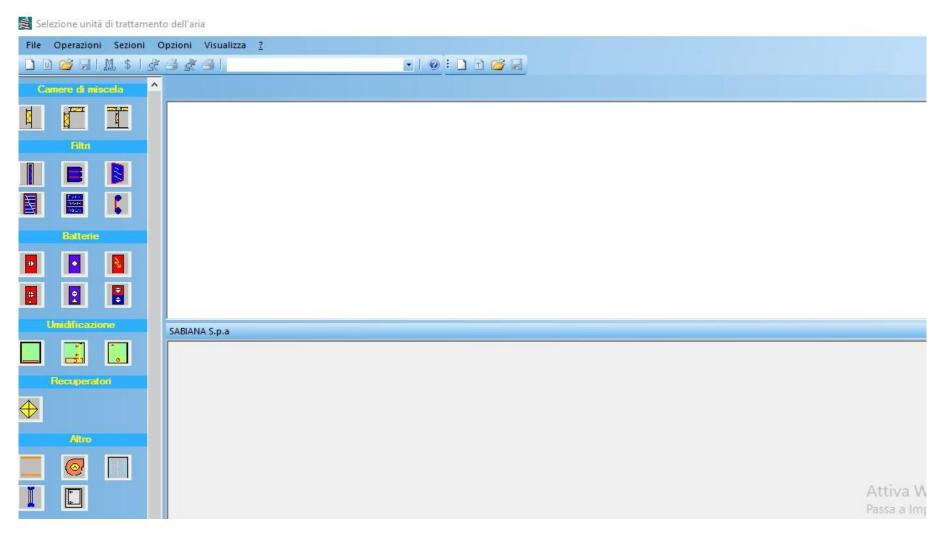

SINTESI CONFRONTO

Carateristica	Pale Avanti	Pale Rovesce
Numero Pale	30-60	8-16
Rendimento %	60-70	75-85
Portate	Alte – basse prevalenze	Alte-alte prevalenze
Pressione Statica	Medio basse	Molto alte
Controllo Inverter	Non adatto	Ottimo
Rumorosità	Bassa a basse velocità	Maggiore a bassa velocità
Dimensioni	Compatte	Più grandi
Costo	Minore	Maggiore
Impiego	Piccole UTA – fan coil	Grandi TUA, VAV, Impianti ad alta efficienza

CALCOLO PREVALENZA

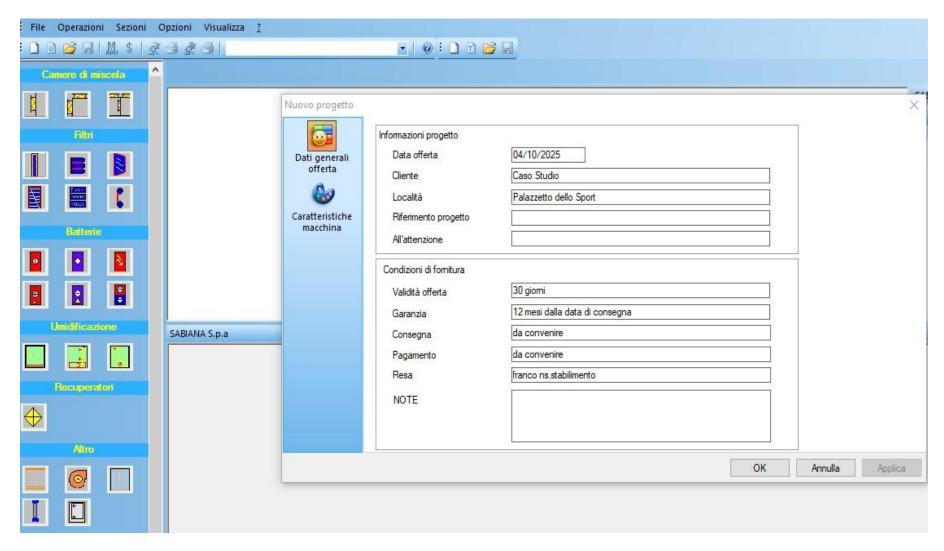
- 1- Calcolo carichi ESTIVI e INVERNALI
- 2- Calcolo ventilazione per PORTATA ARIA PRIMARIA
- 3- Calcolo portata di INFILTRAZIONE
- 4- Calcolo temperature di recupero VMC
- 5- Calcolo temperatura di immissione ESTIVA dal Bypass Factor
- 6- Calcolo della portata ESTIVA per CDZ
- 7- Calcolo temperatura di immissione INVERNALE da portata Estiva
- 8- Calcolo della produzione di vapore per UMIDIFICAZIONE Invernale

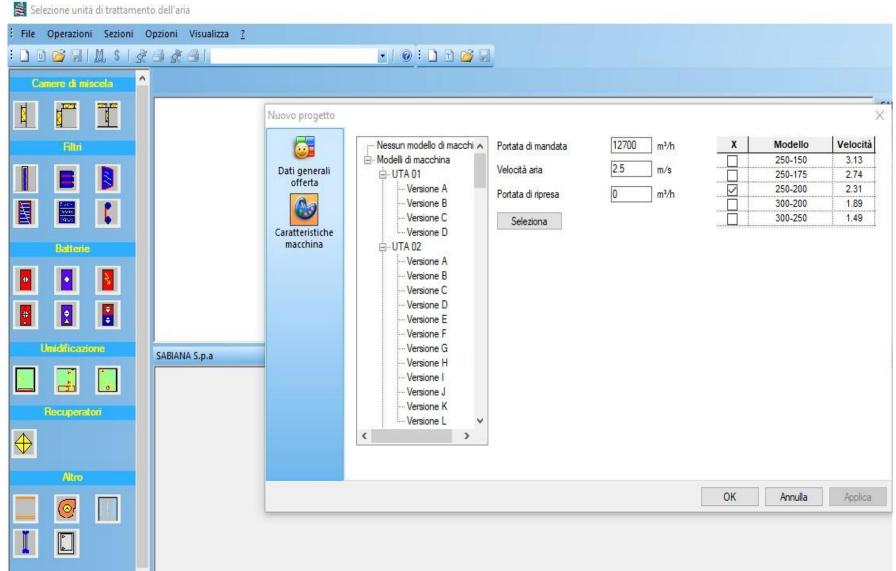
DIMENSIONAMENTO UTA

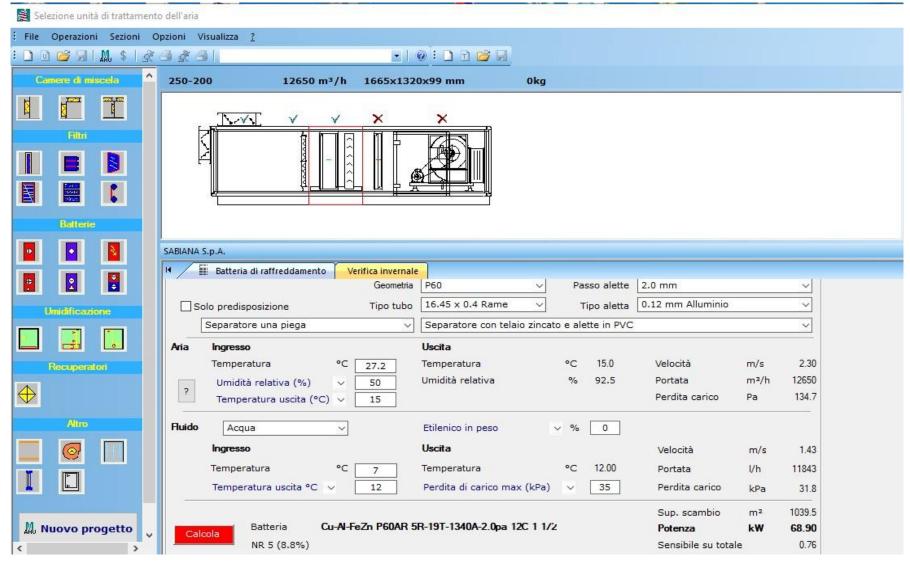

a- selezione architettura d- selezione sezione filtrante

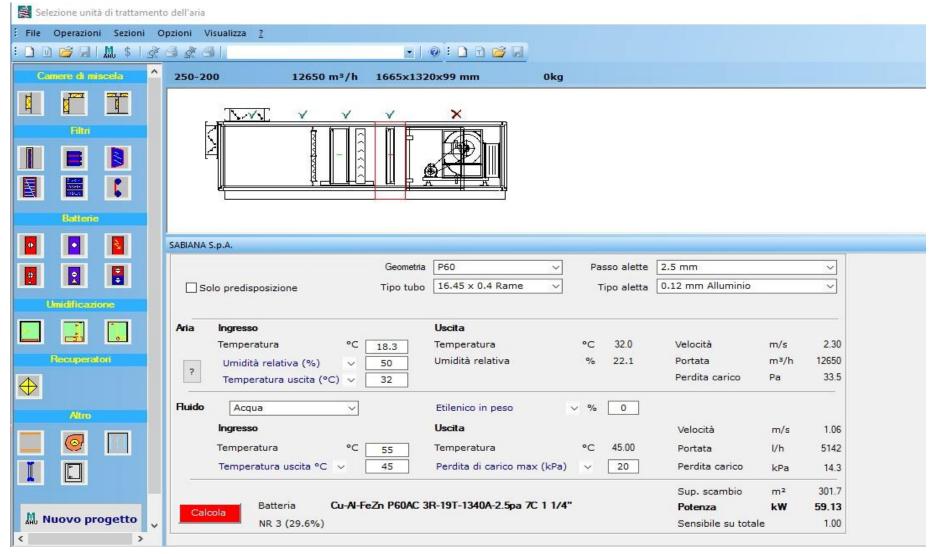
b- selezione recupero e- selezione batterie – e +

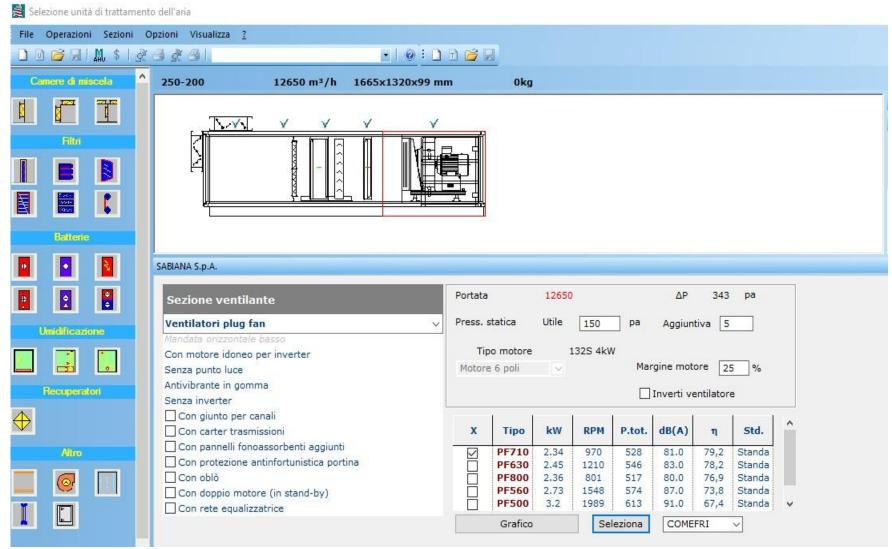
c- selezione sezione frontale f- selezione ventilatori

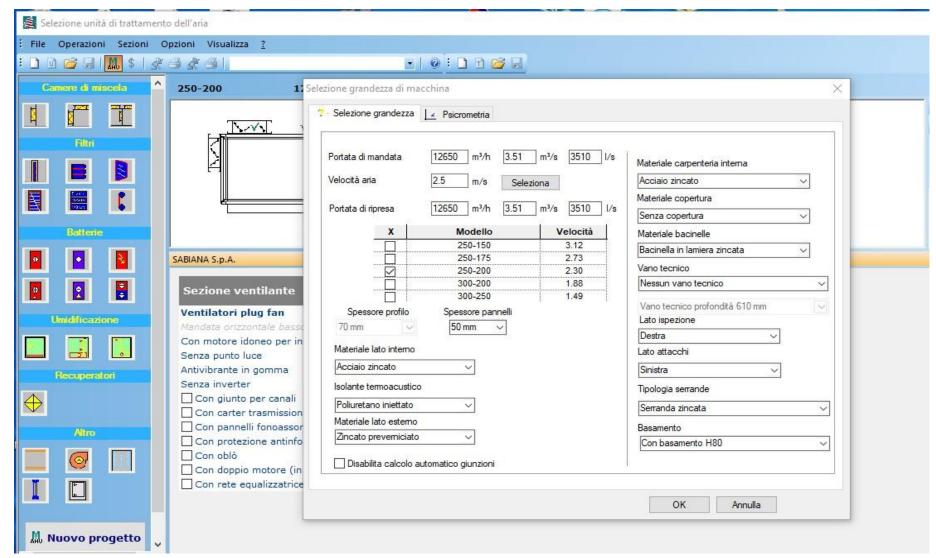


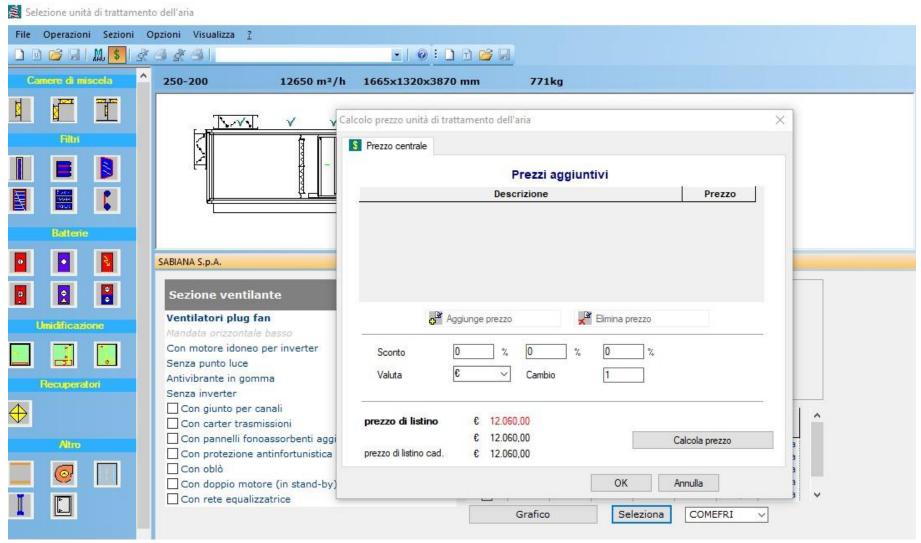












Selezione unita di trattamento dell'aria 😭 Print 🕨 🤚 🔟 🔍 🔍 Close offerta N": data: 04-10-2025 SABIANA redalta da: ing. 8. Caroll -IL COMFORT AMBIENTALE agenzia: Part 2 0 1 1-05-2009riferimento offerta: riferimento unità; localta: cliente Palazzetto dello sport all'attenzione: Nº 1 Unità di trattamento aria Vulcan Pro - modello 250-200 portata aria di MANDATA = milh 12860 pressione (prevalenza) statica utile in MANDATA = Pa 160 portata aria di RIPRESA = m3h 12660 pressione (prevalenza) statica utile in RIPRESA = Pa tezioni di macchina: 1= lri. 3870 dimensioni: cezione inferiore 3870 mm altozza+basamento: 1320 + 80 mm lunghezza: sezione superiore lunghezza: (0)(0) al tozza: 1885 mm profondita: peso toble: 880 kg le dimensioni, le s'uddividori delle sexioni ed il peso poli amio subire variationi in fese esecutiva: caratteristiche costruttive Telalo portante con profiliesitusi in alluminioda mm 70 spessore panneli: mm: 50 polluretano iniettato lato interno pannello: In acolato zincato carperterlairtema: lamiera zinoata lato estemo pannello: In apolalo prevernidato badnelle in: lamiera zinoata semande: ctandard in lamiera zinoata lato spezione: destra late attaceti: cinictra CONDIZIONI COMMERCIALI NOTE validità offerta: 30 glorni francons.stabilimento resa: da convenire consegna: pagamento: da convenire prezzo di listino cad. €12.080,00+IVA Ulterforidivisionidi macchina iistno cad. €320,00 + IVA SARIANA s.c.a. - Vis Plave S3 2001 1 Carbella (Wij Illele - Tel. 02 97203.1 - Fac 02 9777282 - - etio@cabarea.6 - www.sabarea.6 -Page 1/4

offerta N°: data: 04-10-2025

redatta da: Ing. S. Caroli -

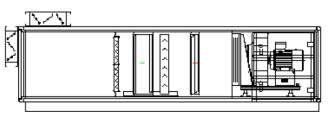
agenzia:

Rel. 2.0 11-06-2009-

riferimento offerta: riferimento unità:

località:

Palazzetto dello Sport


all'attenzione:

cliente:

N° 1 Unità di trattamento aria Vulcan Pro - modello 250-200

portata aria di MANDATA = m³/h 12650 pressione (prevalenza) statica utile in MANDATA = Pa 150 portata aria di RIPRESA = m³/h 12650 pressione (prevalenza) statica utile in RIPRESA = Pa //

schema:

sezioni di macchina: 1 = Inf. 3870

dimensioni:

sezione inferiore lunghezza: 3870 mm altezza+basamento: 1320 + 80 mm sezione superiore lunghezza: mm altezza: mm peso totale: 860 kg

le dimensioni, le suddivisioni delle sezioni ed il peso potranno subire variazioni in fase esecutiva

caratteristiche costruttive

Telaio portante con profili estrusi in alluminio da mm 70 spessore pannelli: mm: isolamento: poliuretano iniettato lato interno pannello: in acc

isolamento: poliuretano iniettato lato interno pannello: in acciaio zincato carpenteria interna: lamiera zincata lato esterno pannello: in acciaio preverniciato bacinelle in: lamiera zincata serrande: standard in lamiera zincata

lato ispezione: destra lato attacchi: sinistra

CONDIZIONI COMMERCIALI

Page 1/4

validità offerta: 30 giorni resa: franco ns.stabilimento

consegna: da convenire
pagamento: da convenire
prezzo di listino cad. € 12.060,00 + IVA

Ulteriori divisioni di macchina:listino cad. € 320,00 + IVA

SABIANA s.p.a. - Via Piave 53 20011 Corbetta (MI) Italia

NOTE

		Sezione d	i macchina	1	
SEZIONE	1	LUNGHEZZA: (mm)	3870	PESO :(kg)	857

Camera di miscela

Serranda di aria esterna in lamiera zincata 1540x710 mm. Portata d'aria 12650 m3/h

Predisposta per servocomando

Serranda di ripresa in lamiera zincata 1540x710 mm. Portata d'aria 12650 m³/h

Predisposta per servocomando

Filtro sintetico

Filtri a celle rigenerabili in fibra sintetica di tipo pieghettato, spessore 48 mm, efficienza G4 N°6 500 x 500 x 48 mm

ARIA			FLUIDO			
Portata aria	12650	m³/h	Acqua			
Temperatura ingresso	27.2	°C				
Umidità relativa	50	%	Temperatura ingresso	7	°C	
Temperatura uscita	15	°C	Temperatura uscita	12	°C	
Umidità relativa	92	%	Portata	11837	l/h	
Potenzialità	68.9	kW	Perdita di carico	31.8	kPa	
Perdita di carico	135	Pa				
Velocità di attraversamento	2.30	m/s				

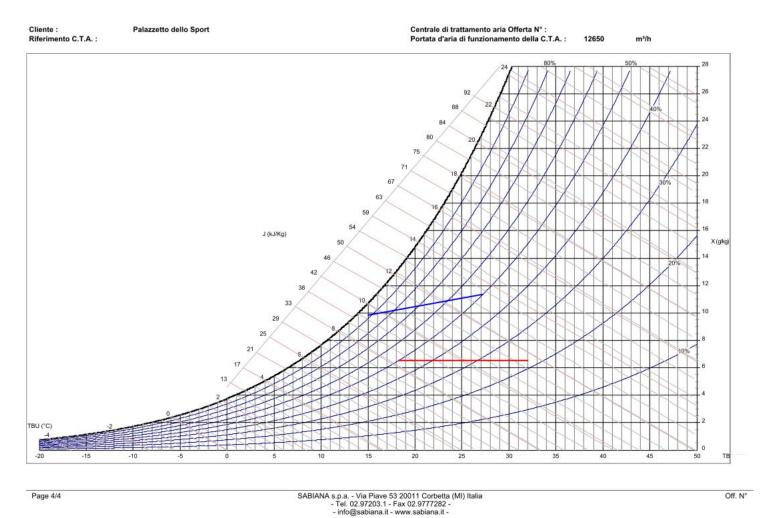
Separatore di gocce a 1 piega in polipropilene e telaio zincato

Bacinella in lamiera zincata

Tubo 16.45 x 0.4 Rame

	Batteria d	i riscaldamento	
ARIA		FLUIDO)
Portata aria	12650 m ³ /h	Acqua	
Temperatura ingresso	18.3 °C	Temperatura ingresso	55 °C
Temperatura uscita	32 °C	Temperatura uscita	45 °C
Potenzialità	59.1 kW	Portata	5086 I/h
Perdita di carico	33 Pa	Perdita di carico	14.3 kPa
Velocità di attraversamento	2.30 m/s		
	Cu-Al P60AC 3R-1	9T-1340A-2.5pa 7C 1 1/4"	

Tubo 16.45 x 0.4 Rame


	VEN	TILATORE					MOTOR	E	
Tipo ventilatore			Senza c	oclea	Potenza	installata		4	kW
Grandezza			PF710		Alimenta	zione		230-400/3/50	V/ph/Hz
Portata			12650	m³/h	Poli			6	
Prevalenza util	е		150+5	Pa	Classe of	li isolamento		F	
Perdite di carico	UTA		343	Pa	Protezio	ne		IP 55	
Pressione dinar	nica		30	Pa					
Pressione totale			528	Pa					
Numero di giri			970	rpm					
Potenza assorb	ita all'asse		2.34	kW					
Dimensione boo	ca ventila	nte		mm					
Livello potenza	sonora		81	dB(A)					
Rendimento			79.2	%					
	ferme resta	ando le prestazio	oni indicate,	la marca	ed il modell	o possono esse	re variate in fas	e esecutiva "	
Livello di poter	nza sonor	a per bande d	ottava						
F [Hz]	63	125	250		500	1000	2000	4000	8000
Mandata [dB]	76	80	83		82	78	74	69	65

Ventilatore di mandata

Microinterrutore di sicurezza

Off.

59