

Life Cycle Assessment della produzione di energia elettrica da fotovoltaico in Italia: situazione attuale e sviluppi futuri

C. Ferrara; B. Marmiroli; M. L. Carvalho, P. Girardi

Roma, 14 ottobre 2025

Seminario: "LIFE CYCLE ASSESSMENT NEI SETTORI EDILIZIO ED ENERGETICO Metodologie e Casi Studio"

Life Cycle Assessment della produzione di energia elettrica da fotovoltaico in Italia: situazione attuale e sviluppi futuri

Scenario Attuale (Scenario_2021)

Composizione mix fotovoltaico italiano al 31/12/2021

Scenario Futuro (Scenario 2030)

Composizione mix fotovoltaico italiano al 31/12/2030

Introduzione

LCA della generazione di elettricità da fotovoltaico: Stato dell'arte

Principali criticità emerse dall'analisi degli studi LCA precedenti:

- Determinazione approssimata della composizione del mix fotovoltaico italiano, spesso considerando solo la tecnologia fotovoltaica dominante (Bastos et al., 2023; Carvalho et al., 2022)
- Modellazione LCA dei sistemi fotovoltaici basata su dati d'inventario generici e obsoleti, nella maggior parte dei casi adottando i dataset di Ecoinvent che riflettono la produzione di moduli in silicio cristallino nel 2005 (Müller et al., 2021; Paiano et al., 2023)
- Bastos, J., Prina, M.G., Garcia, R., 2023. Life-cycle assessment of current and future electricity supply addressing average and marginal hourly demand: An application to Italy. Journal of Cleaner Production 399, 136563. https://doi.org/10.1016/j.jclepro.2023.136563
- Carvalho, M.L., Marmiroli, B., Girardi, P., 2022. Life cycle assessment of Italian electricity production and comparison with the European context. Energy Reports 8, 561–568. https://doi.org/10.1016/j.egyr.2022.02.252
- Müller, A., Friedrich, L., Reichel, C., Herceg, S., Mittag, M., Neuhaus, D.H., 2021. A comparative life cycle assessment of silicon PV modules: Impact of module design, manufacturing location and inventory. Solar Energy Materials and Solar Cells 230, 111277. https://doi.org/10.1016/j.solmat.2021.111277
- Paiano, A., Lagioia, G., Ingrao, C., 2023. A combined assessment of the energy, economic and environmental performance of a photovoltaic system in the Italian context. Science of The Total Environment 866, 161329. https://doi.org/10.1016/j.scitotenv.2022.161329

3

Obiettivi dello studio:

- <u>Determinare</u> l'effettiva composizione del mix fotovoltaico italiano al 2021 (Scenario_2021) e al 2030 (Scenario_2030) e
 <u>Realizzare</u> una modellazione LCA dei sistemi FV basata su dati d'inventario aggiornati e rappresentativi del contesto italiano
- <u>Valutare</u> le performance ambientali degli Scenari definiti e confrontarle con quelle dello scenario Ecoinvent di default (SC_Ecoinvent): scenario fotovoltaico italiano costituito dai relativi dataset di Ecoinvent v 3.8

RSE we move Sistema Energetico

Metodologia

Determinazione delle composizione del Mix FV italiano al 2021

Incrocio ed elaborazione di dati e informazioni in merito alla ripartizione della potenza fotovoltaica installata in funzione di:

- a) Tipologia di installazione*
 - A terra (T)
 - Non a terra (NT)
- b) Tipologia di tecnologia*
 - Silicio Policristallino (Poli-Si)
 - Silicio Monocristallino (Mono-Si)
 - Silicio amorfo (a-Si)
 - Tellururo di cadmio (CdTE)
 - Diseleniuro di rame e indio (CIS)

Tab. 1. Ripartizione della potenza FV complessiva installata alla fine del 2021 in funzione della tipologia di configurazione impiantistica e di tecnologia fotovoltaica

Tinalagia di taonalagia	Potenza in	- Totalo (C)M()	
Tipologia di tecnologia	A terra	Non a terra	Totale (GW)
Silicio Policristallino	5.65	10.13	15.78
Silicio Monocristallino	1.90	3.68	5.58
Silicio amorfo	0.08	0.20	0.28
CdTe; CIS	0.42	0.53	0.95
Totale per tipologia di installazione	8.05	14.54	22.59

^{*}Fonte dei dati:

Metodologia

Determinazione delle composizione del Mix FV italiano al 2021

Incrocio ed elaborazione di dati e informazioni in merito alla ripartizione della potenza fotovoltaica installata in funzione di:

- c) Tipologia di tecnologia di produzione delle celle FV in Silicio Monocristallino (Mono-Si)*
 - Aluminium Back Surface Field (Al-BSF)
 - Passivated Emitter and Rear Cell (PERC)
 - Interdigitated Back Contact (IBC)
 - Heterojunction (HJT)

Tab. 2. Ripartizione della potenza installata in funzione delle differenti tecnologie di produzione delle celle in Silicio Monocristallino

A	Incremento annuale di	Ripartizione della Potenza installata in Mono-Si (MW					
Anno	Potenza in Mono-Si (MW)	Al-BSF	PERC	HJT	IBC		
< 2013	3692.7	3692.7	0.0	0.0	0.0		
2013	126.2	116.1	5.0	0.6	4.4		
2014	85.9	79.0	3.4	0.4	3.0		
2015	64.5	56.7	4.8	0.9	2.1		
2016	80.2	70.6	5.9	1.1	2.6		
2017	83.8	61.2	20.1	8.0	1.7		
2018	89.5	53.7	32.2	1.8	1.8		
2019	263.3	81.6	171.1	5.3	5.3		
2020	450.2	139.6	292.6	9.0	9.0		
2021	647.4	71.2	550.3	16.2	9.7		
Totale	5583.6	4422.4	1085.6	36.2	39.5		

Rapporti annuali "International Technology Roadmap for Photovoltaic (ITRPV)" dell'associazione VDMA (Verband Deutscher Maschinen- und Anlagenbau) pubblicati dal 2013 al 2022.

^{*}Fonte dei dati:

Determinazione delle composizione del Mix FV italiano al 2030

Incrocio ed elaborazione di dati e informazioni in merito alla ripartizione della potenza fotovoltaica installata in funzione di:

- a) Tipologia di installazione*
 - A terra (T)
 - Non a terra (NT)
- b) Tipologia di tecnologia*
 - Silicio Policristallino (Poli-Si)
 - Silicio Monocristallino (Mono-Si)
 - Silicio amorfo (a-Si)
 - Tellururo di cadmio (CdTE)
 - Diseleniuro di rame e indio (CIS)

Tab. 3. Ripartizione della potenza FV complessiva installata alla fine del 2030 in funzione della tipologia di configurazione impiantistica e di tecnologia fotovoltaica

Anno	_		Tipologia di Modulo (%)		Tipologia di Installazione (%) Potenza insta		•		Potenza installata
Anno	Poli-Si	Mono-Si	a-Si	CdTe; CIS	A Terra	Non a terra	(MW)		
2022	0.65	0.30	0.011	0.039	0.34	0.66	25064		
2024	0.43	0.54	0.007	0.025	0.43	0.57	38048		
2026	0.32	0.66	0.005	0.019	0.48	0.52	51048		
2030	0.21	0.78	0.004	0.012	0.52	0.48	78748		

^{*}Fonte dei dati:

Metodologia

Determinazione delle composizione del Mix FV italiano al 2030

Incrocio ed elaborazione di dati e informazioni in merito alla ripartizione della potenza fotovoltaica installata in funzione di:

- c) Tipologia di tecnologia di produzione delle celle FV in Silicio Monocristallino (Mono-Si)*
 - Aluminium Back Surface Field (Al-BSF)
 - Passivated Emitter and Rear Cell (PERC)
 - Interdigitated Back Contact (IBC)
 - Heterojunction (HJT)

Tab. 4. Ripartizione della potenza installata in funzione delle differenti tecnologie di produzione delle celle in Silicio Monocristallino

Anna	Ripartizio	Ripartizione della potenza installata i Mono-Si (MW)				
Anno	AI-BSF	PERC	HJT	IBC		
< 2022	4422.4	1085.6	36.2	39.5		
2022	77.5	1705.4	116.3	38.8		
2024	0	11296.3	1298.4	389.5		
2026	0	10920.0	1560.0	520.0		
2030	0	21606.0	4709.0	1385.0		
Totale	4499.9	46613.2	7719.9	2372.8		

Rapporti annuali "International Technology Roadmap for Photovoltaic (ITRPV)" dell'associazione VDMA (Verband Deutscher Maschinen- und Anlagenbau) pubblicati dal 2013 al 2022.

^{*}Fonte dei dati:

RSE we move record research Approccio LCA

Unità Funzionale:

1kWh di energia elettrica prodotta da mix fotovoltaico italiano al termine degli anni di riferimento

- Confini del sistema: Approccio "dalla culla alla tomba" (Fig.1)
- Modellazione e dati d'inventario:

Sistemi FV in Poli-Si e Mono-Si con tecnologia Al-BSF: adottati dati d'inventario aggiornati pubblicati nel report IEA "Life Cycle Inventories and Life Cycle Assessments of Photovoltaic Systems" pubblicato nel 2020 (Frischknecht et al., 2020)*

Sistemi FV in Mono-Si con tecnologia PERC, HJT e IBC: modellati con dati d'inventario primari pubblicati in report e paper relativi a studi precedenti del gruppo di ricerca (Brivio et al., 2024)*; (Danelli et al., 2024)*; (Danelli and Brivio, 2022)*

Metodologia

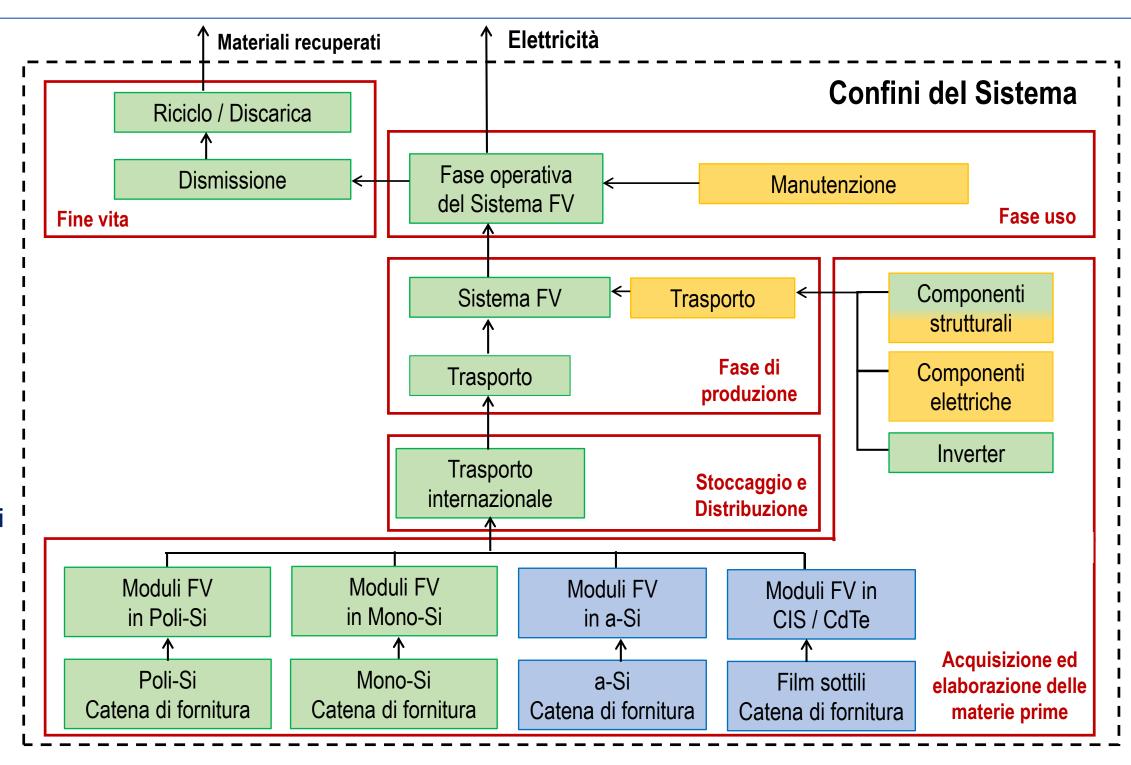


Fig. 1. Confini del sistema di studio, elaborazioni da report IEA 2020 (Frischknecht et al., 2020)*.

Riquadri verdi = Step di processo i cui dataset sono stati dataset aggiornati o sostituiti; Riquadri blu = Step di processo modellati con dataset di Ecdoinvent adattati allo studio; Riquadri gialli = Step di processo modellati con i dataset originali di Ecoinvent v3.8.

Metodologia

Dati d'inventario

Tab. 5. Principali caratteristiche dei moduli in Poli-Si e Mono-Si con tecnologia Al-BSF (Report IEA PVPS: Frischknecht et al., 2020)*

	Tipologia di Modulo		
Caratteristiche del modulo	Poli-Si_ Al-BSF	Mono-Si_ Al-BSF	
Efficienza (%)	18.0%	19.5%	
Area per impianto da 3kWp (m²)*	17.2	15.8	
Area per impianto da 570kWp (m²)*	3261.7	3010.8	

Tab. 6. Principali caratteristiche dei moduli in Mono-Si con tecnologia PERC, IBC e HJT (Brivio et al., 2024; Danelli et al., 2024; Danelli and Brivio, 2022)*

Caratteristiche del modulo	Tipologia di Modulo				
	Mono-Si_PERC	Mono-Si_HJT	Mono-Si_IBC		
Efficienza (%)	21.2%	20.2%	21.6%		
Area per impianto da 3kWp (m²)*	14.6	15.3	14.3		
Area per impianto da 570kWp (m²)*	2774.6	2906.4	2720.6		

Tab. 7. Principali caratteristiche dei moduli in CdTe; CIS e a-Si (Dataset Ecoinvent v 3.8)

Caratteristiche del modulo	Tipologia di Modulo			
	Cdte	CIS	a-Si	
Efficienza (%)	9.0%	10.0%	6.4%	
Area per impianto da 3kWp (m²)*	34.3	28.9	47.9	
Area per impianto da 570kWp (m²)*	6333.3	5327.1	9102.3	

^{*}Riferimenti riportati al termine della presentazione

Dati d'inventario

• Lifetime:

Componenti d'impianti = 30 anni Inverter = 15 anni

• Fine vita dei sistemi:

Vetro e metalli = Riciclo Altre componenti = Discarica/Incenerimento

• Ore equivalenti:

Tab. 8. Ore equivalenti degli impianti FV a Terra e Non a Terra per gli anni 2021 e 2030 (Elaborazioni da GSE, 2024 e PNIEC2.0, 2023)*

Anno	Tipologia di installazione	Ore eq, (h)
2021	A terra (T)	1308.0
2021	Non a terra (NT)	997.6
2030	A terra (T)	1468.2
2030	Non a terra (NT)	1229.5

Metodologia

Metodo di valutazione degli impatti

Environmental Footprint v3.1:

Tab. 9. Categorie d'impatto del metodo Environmental Footprint v3.1 adottate per l'analisi

Impact category	Unit
Climate change (CC)	kg CO2 eq
Ozone depletion (OD)	kg CFC11 eq
Ionising radiation (IR)	kBq U-235 eq
Photochemical ozone formation (POF)	kg NMVOC eq
Particulate matter (PM)	disease inc.
Acidification (A)	mol H+ eq
Eutrophication, freshwater (EF)	kg P eq
Eutrophication, marine (EM)	kg N eq
Eutrophication, terrestrial (ET)	mol N eq
Resource use, minerals and metals (RMm)	kg Sb eq

Risultati e Discussione

Composizione del Mix FV dello Scenario_2021 e dello Scenario_2030

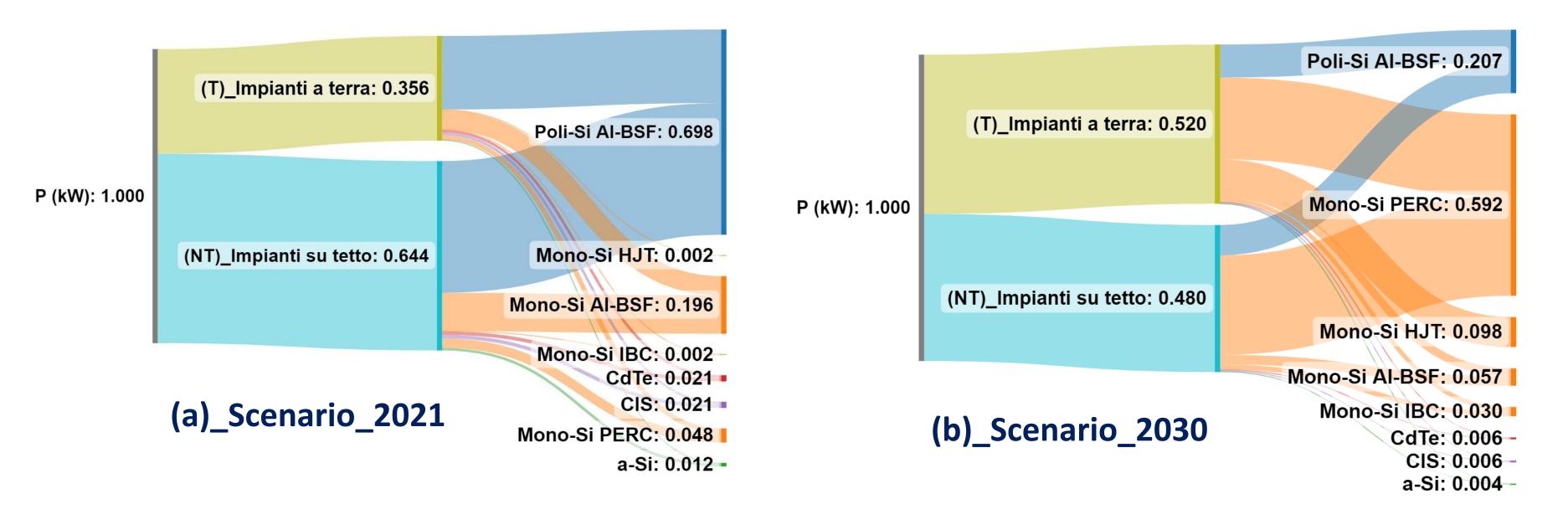
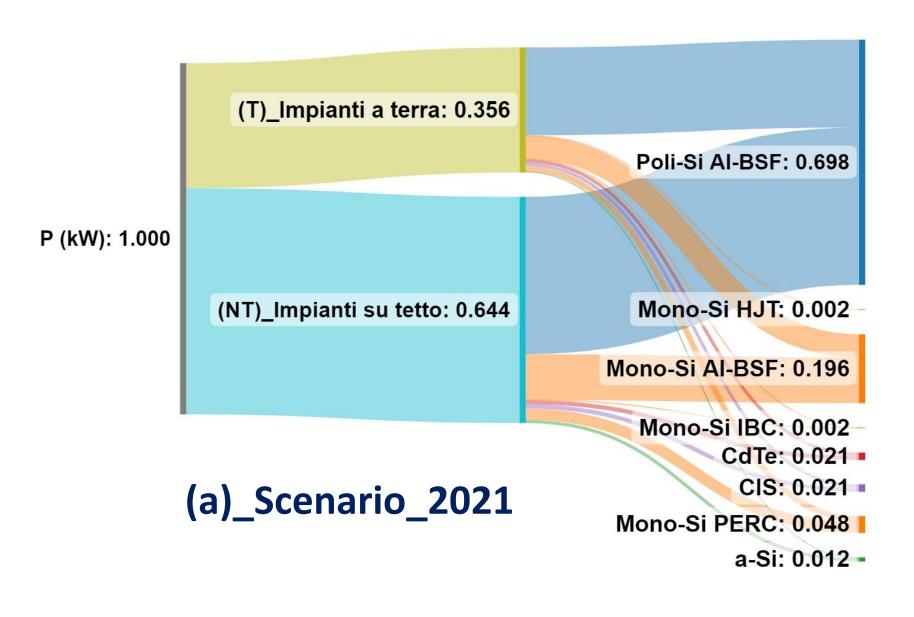



Fig. 2. Ricostruzione del parco fotovoltaico in Italia al 2021 (a) e al 2030 (b) in funzione di 1 kW di potenza fotovoltaica complessiva installata.

Risultati e Discussione

Composizione del Mix FV dello Scenario_2021 e dello Scenario_Ecoinvent

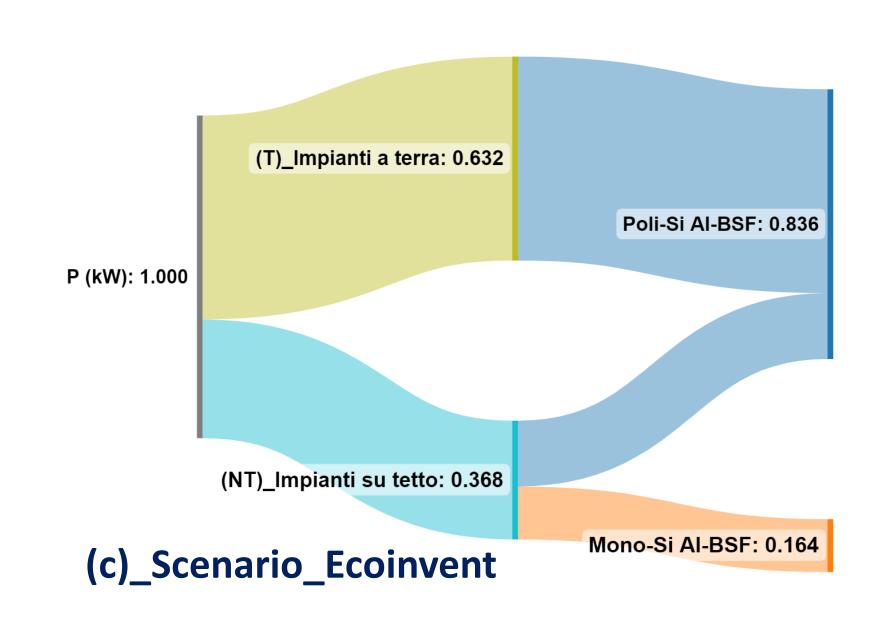
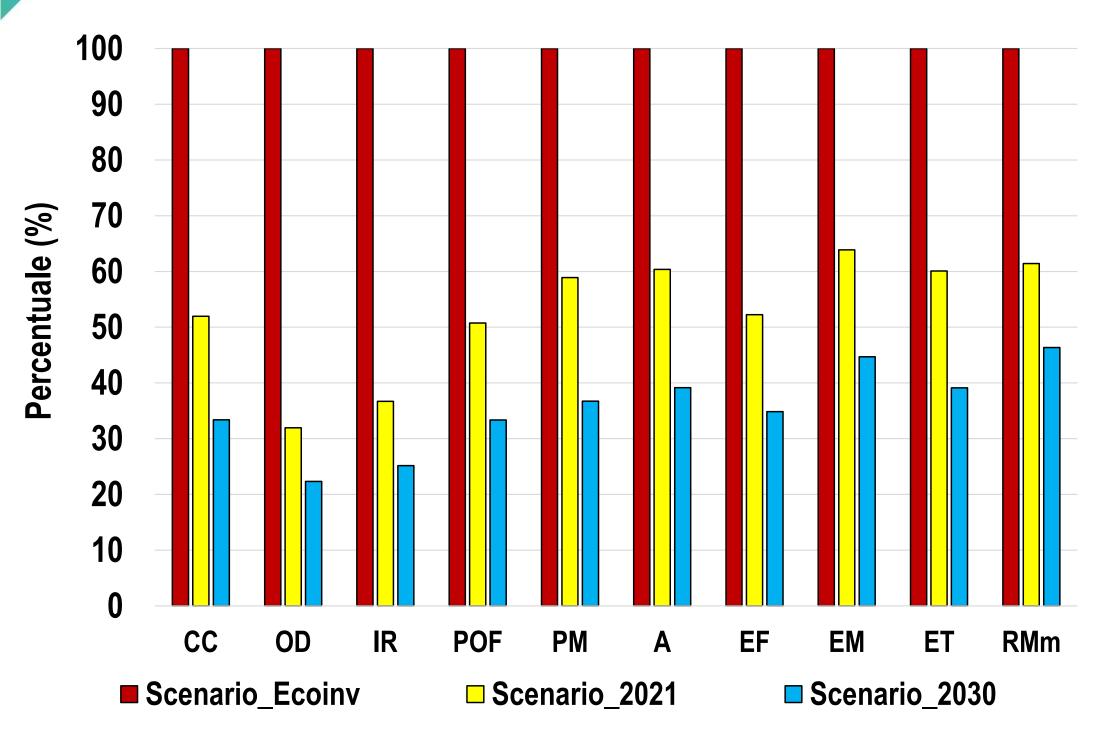



Fig. 3. Ricostruzione del parco fotovoltaico in Italia al 2021 (a) e composizione del mix fotovoltaico per lo scenario di Ecoinvent (c) in funzione di 1 kW di potenza fotovoltaica complessiva installata.

Performance ambientali degli Scenari Fotovoltaici considerati

Fattori chiave:

Ore equivalenti

Scenario_Ecoinvent = 1033 h Scenario_2021 = 1108 h Scenario_2030 = 1361 h

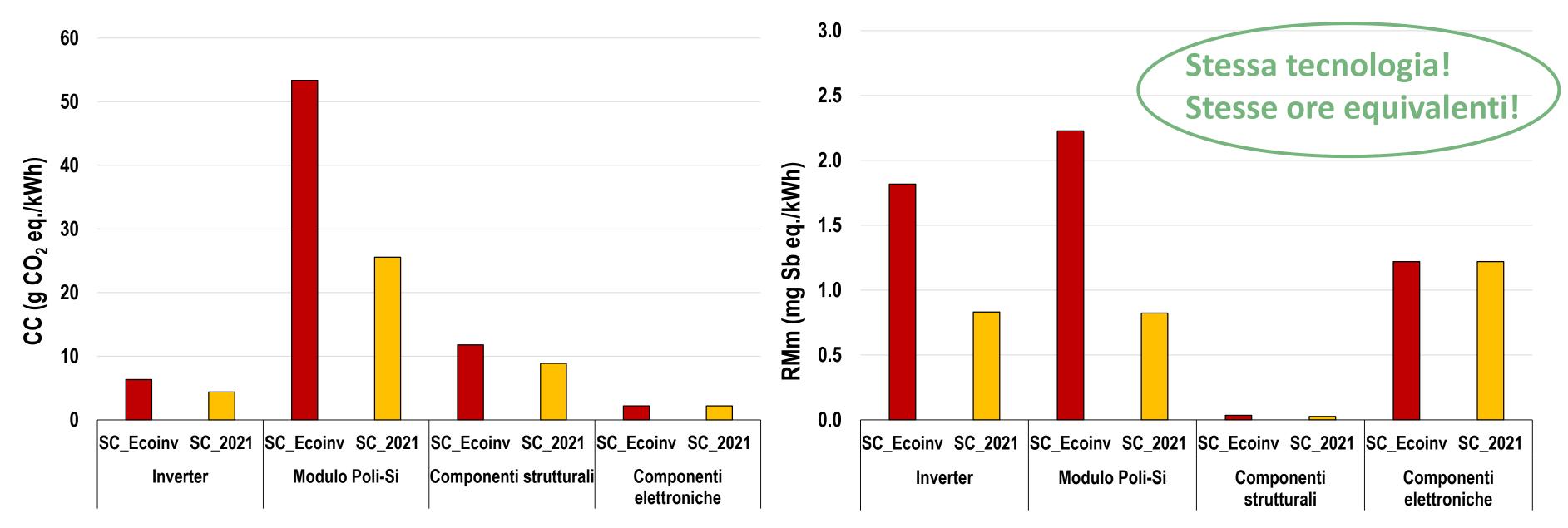
- Aggiornamento dei dati d'inventario
- Tecnologie FV ad alta efficienza

Scenario_Ecoinvent = 0% Scenario_2021 = 5.2% Scenario_2030 = 72%

Fig. 4. Confronto tra le performance ambientali degli scenari FV considerati in funzione della generazione di 1 kWh di energia elettrica da fotovoltaico. Impatti ambientali stimati con le categorie d'impatto più rilevanti del metodo Environmental Footprint v3 (EF 3.0).

Performance ambientali degli Scenari Fotovoltaici considerati

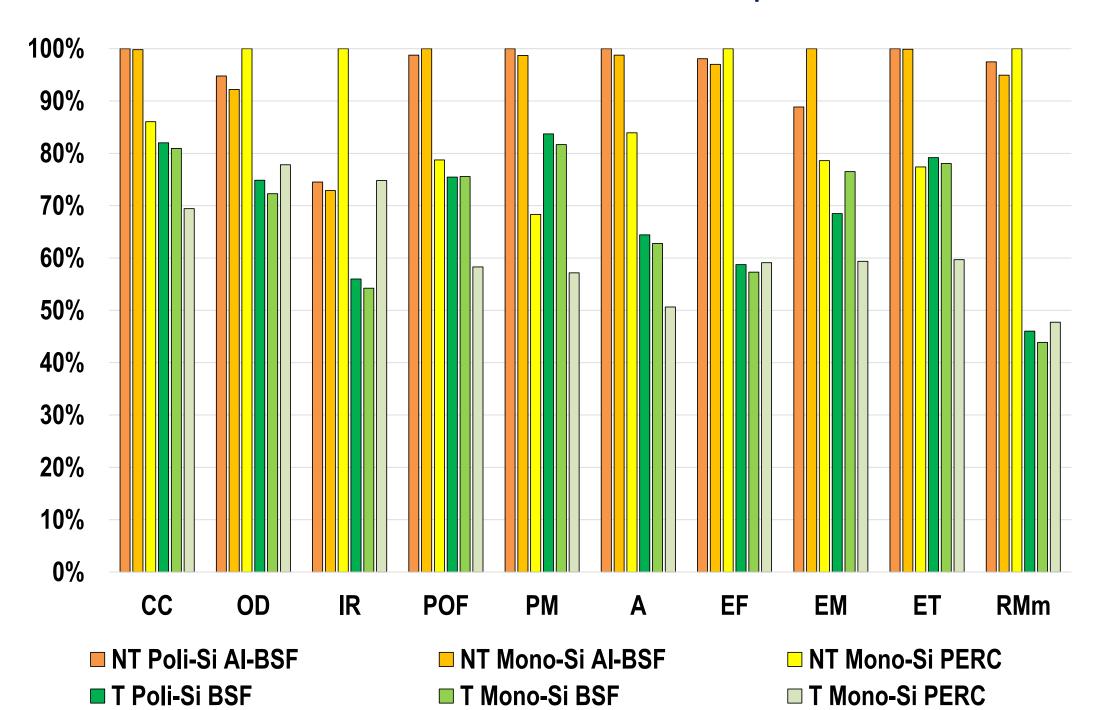
Tab. 10 Confronto tra le performance ambientali degli scenari FV considerati in funzione della generazione di 1 kWh di energia elettrica da fotovoltaico.


Categoria d'impatto	Unit	Scenari FV		
		Scenario_Ecoinvent	Scenario_2021	Scenario_2030
Climate change	kg CO2 eq	7.5E-02	3.9E-02	2.5E-02
Ozone depletion	kg CFC11 eq	8.2E-09	2.6E-09	1.8E - 09
lonising radiation	kBq U-235 eq	6.4E-03	2.4E-03	1.6E-03
Photochemical ozone formation	kg NMVOC eq	3.0E-04	1.5E-04	9.9E-05
Particulate matter	disease inc.	5.2E-09	3.1E-09	1.9E-09
Acidification	mol H+ eq	5.3E-04	3.2E-04	2.1E-04
Eutrophication, freshwater	kg P eq	4.1E-05	2.1E-05	1.4E-05
Eutrophication, marine	kg N eq	8.8E-05	5.6E-05	3.9E-05
Eutrophication, terrestrial	mol N eq	8.9E-04	5.3E-04	3.5E-04
Resource use, minerals and metals	kg Sb eq	3.8E-06	2.4E-06	1.8E-06

Risultati e Discussione

Performance ambientali degli Scenari Fotovoltaici considerati

Confronto tra Scenario Ecoinvent (SC_Ecoinvent) e Scenario 2021 (SC_2021): Impatti ambientali di 1 kWh di energia elettrica prodotta con sistema FV installato su tetto Poli-Si_Al-BSF*


^{*}Sistema FV installato su tetto in Silicio Policristallino (Poli-Si) con tecnologia Aluminium Back Surface Field (Al-BSF)

Risultati e Discussione

Performance ambientali degli Scenari Fotovoltaici considerati

Confronto tra le performance ambientali delle tecnologie fotovoltaiche più rappresentative del mix al 2021 in funzione di 1 kWh di elettricità prodotta

Fattori chiave:

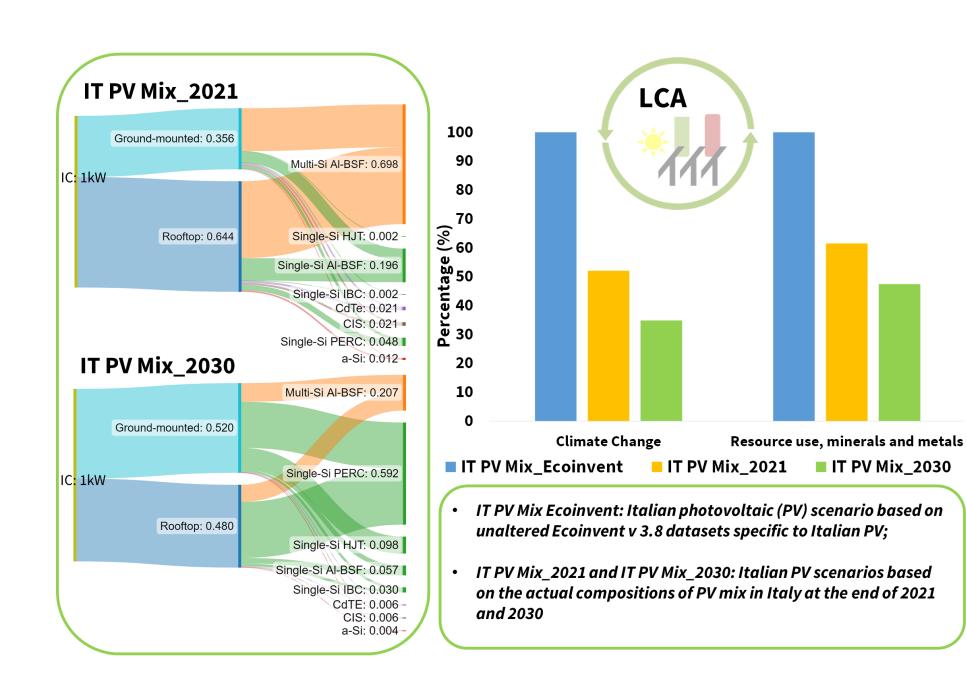
- Ore equivalenti
 Impianti a Terra (T)= 998 h
 Impianti Non a Terra (NT) = 1308 h
- Efficienza dei moduli

Poli-Si Al-BSF (18%) Mono-Si Al-BSF (19.5%) Mono-Si PERC (21.2%)

Conclusioni

• Lo Scenario Fotovoltaico italiano di Ecoinvent porta ad una notevole sovrastima degli impatti della produzione di elettricità da FV in Italia

- Tre fattori chiave sono stati identificati:
 - 1) valori delle ore equivalenti di funzionamento;
 - 2) l'aggiornamento dei dati di inventario
 - 3) l'aggiunta di nuovi dataset per le tecnologie più avanzate (PERC;HJT;IBC)
- L'analisi a livello di componente d'impianto ha sottolineato l'influenza del parametro relativo all'efficienza dei moduli


Pubblicazione

Life Cycle Assessment of Photovoltaic electricity production in Italy: Current scenario and future developments

Ferrara, C., Marmiroli, B., Carvalho, M.L., Girardi, P., 2024.

Science of the Total Environment, 948; 174846.

https://doi.org/10.1016/j.scitotenv.2024.174846

Riferimenti

- GSE, 2024. Rapporto statistico Solare Fotovoltaico. Statistiche. URL https://www.gse.it/Dati-e-Scenari_site/statistiche_site
- VDMA, 2024. International Technology Roadmap for Photovoltaic (ITRPV) vdma.org VDMA [WWW Document]. URL https://www.vdma.org/international-technology-roadmap-photovoltaic
- PNIEC 2.0, 2023. PIANO NAZIONALE INTEGRATO PER L'ENERGIA E IL CLIMA. Ministero dell'ambiente e della sicurezza energetica. URL https://www.mase.gov.it/sites/default/files/PNIEC 2023.pdf
- Frischknecht, R., Stolz, P., Krebs, L., de Wild-Scholten, M., Sinha, P., 2020. Life cycle inventories and life cycle assessment of photovoltaic systems. Report IEA-PVPS T12-19. International Energy Agency (IEA) PVPS Task 12. https://iea-pvps.org/wp-content/uploads/2020/12/IEA-PVPS-LCI-report-2020.pdf
- Brivio, E., Danelli, A., Girardi, P., 2024. Ground-mounted or residential rooftop photovoltaic plant European production or Chinese production: which is the most environmentally sustainable system? A case study in Italy. EPJ Photovolt. 15, 8. https://doi.org/10.1051/epjpv/2024005
- Danelli, A., Brivio, E., 2022. A Comparative Life-Cycle Assessment of Renewable Energy from High Efficiency Solar Photovoltaic Technologies. 8th World Conference on Photovoltaic Energy Conversion; 1625-1631 7 pages, 3166 kb. https://doi.org/10.4229/WCPEC-82022-5DV.2.41
- Danelli, A., Brivio, E., Girardi, P., Baggio, N., Libal, J., 2024. Environmental Life Cycle Assessment of Passivated Emitter and Rear Contact (PERC) Photovoltaic Module Technology. PVPS Task 12. IEA. https://iea-pvps.org/key-topics/environmental-life-cycle-assessment-of-passivated-emitter-and-rear-contact-perc-photovoltaic-module-technology/.
- Danelli, A., Brivio, E., 2021. Analisi LCA di un impianto fotovoltaico dalla tecnologia promettente IBC e confronto con altre soluzioni innovative. Rapporto di Sistema, RSE, n. 21010651, Milano.
- Danelli, A., Brivio, E., 2020. Analisi LCA di un impianto fotovoltaico piano con moduli PERC e confronto con altre tecnologie innovative. Rapporto di Sistema, RSE, n. 21007437.
- Danelli, A., Gargiulo, A., 2019. LCA di un impianto fotovoltaico piano con moduli ad eterogiunzione. Ricerca di Sistema, RSE, n. 20000493, Milano.

Rimani sempre aggiornato con RSE perché

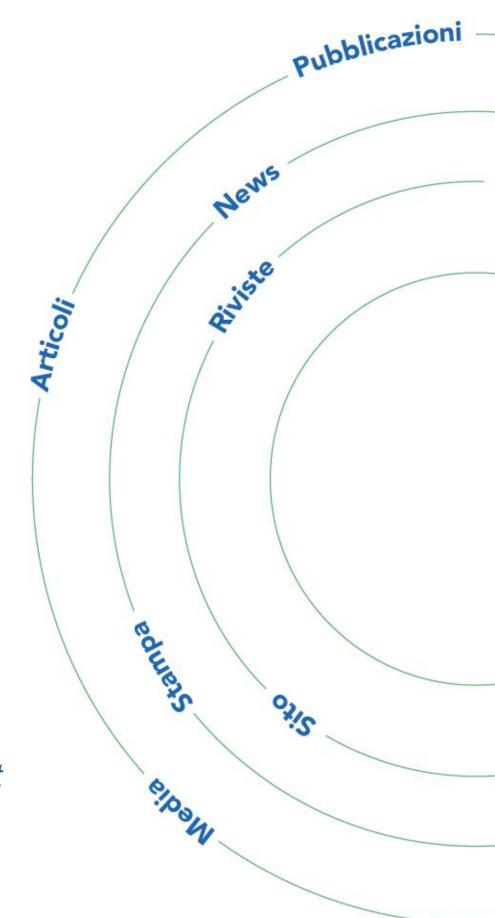
#wemoversearch

Grazie per l'attenzione

www.rse-web.it

@Ricerca sul Sistema Energetico - RSE SpA

@RSEnergetico



RSE SpA - Ricerca sul Sistema Energetico

Carmen Ferrara

carmen.ferrara@rse-web.it

